# ECE 205: Advanced Calculus 1 ## Laplace transform The Laplace transform is a wonderful operation to convert a function of $t$ into a function of $s$. Where $s$ is an unknown variable independent of $t$: $$ \mathcal L\{f(t)\}=F(s)=\int^\infty_0e^{-st}f(t)dt, s > 0 $$ ??? example To solve for $\mathcal L\{\sin(at)\}$: \begin{align*} \mathcal L\{f(t)\}&=\int^\infty_0e^{-st}\sin(at)dt \\ \\ \text{IBP: let $u=\sin(at)$, $dv=e^{-st}dt$:} \\ &=\lim_{B\to\infty} \underbrace{\biggr[ \cancel{-\frac 1 se^{-st}\sin(at)}}_\text{0 when $s=0$ or $s=\infty$}+\frac a s\int e^{-st}\cos(at)dt \biggr]^B_0 \\ &=\frac a s\lim_{B\to\infty}\left[\int e^{-st}\cos(at)dt \right]^B_0 \\ \text{IBP: let $u=\cos(at)$, $dv=e^{-st}dt$:} \\ &=\frac a s \lim_{B\to\infty}\left[ -\frac 1 s e^{-st}\cos(at)-\frac a s\underbrace{\int e^{-st}\sin(at)dt}_{\mathcal L\{\sin(at)\}} \right]^B_0 \\ &=\frac{a}{s^2}-\frac{a^2}{s^2}\mathcal L\{\sin(at)\} \\ \mathcal L\{\sin(at)\}\left(1+\frac{a^2}{s^2}\right)&=\frac{a}{s^2} \\ \mathcal L\{\sin(at)\}&=\frac{a}{a^2+s^2}, s > 0 \end{align*} A **piecewise continuous** function on $[a,b]$ is continuous on $[a,b]$ except for a possible finite number of finite jump discontinuities. - This means that any jump discontinuities must have a finite limit on both sides. - A piecewise continuous function on $[0,\infty)$ must be piecewise continuous $\forall B>0, [0,B]$. The **exponential order** of a function is $a$ if there exist constants $K, M$ such that: $$|f(t)|\leq Ke^{at}\text{ when } t\geq M$$ !!! example - $f(t)=7e^t\sin t$ has an exponential order of 1. - $f(t)=e^{t^2}$ does not have an exponential order. ### Linearity A **piecewise continuous** function $f$ on $[0,\infty)$ of an exponential order $a$ has a defined Laplace transform for $s>a$. Laplace transforms are **linear**. If there exist LTs for $f_1, f_2$ for $s>a_1, a_2$, respectively, for $s=\text{max}(a_1, a_2)$: $$\mathcal L\{c_1f_1 + c_2f_2\} = c_1\mathcal L\{f_1\} + c_2\mathcal L\{f_2\}$$ ??? example We find the Laplace transform for the following. $$ f(t)=\begin{cases} 1 & 0\leq t < 1 \\ e^{-t} & t\geq 1 \end{cases} $$ Clearly $f(t)$ is piecewise ocontinuous on $[0,\infty)$ and has an exponential order of -1 when $t\geq 1$ and 0 when $0\leq t<1$. Thus $\mathcal L\{f(t)\}$ is defined for $s>0$. \begin{align*} \mathcal L\{f(t)\}&=\int^1_0 e^{-st}dt + \int^\infty_1e^{-st}e^{-t}dt \\ \tag{$s\neq 0$}&=\left[-\frac 1 s e^{-st}\right]^1_0 + \int^\infty_1e^{t(-s-1)}dt \\ &=-\frac 1 se^{-s}+\frac 1 s + \lim_{B\to\infty}\left[ \frac{1}{-s-1}e^{t(-s-1)} \right]^B_1 \\ \tag{$s\neq 0,s>-1$}&=\frac{-e^{-s}+1}{s} -\frac{e^{-s-1}}{-s-1} \end{align*} We solve for the special case $s=0$: \begin{align*} \mathcal L\{f(t)\}&=\int^1_0 e^{0}dt + \int^\infty_1e^{-st}e^{-t}dt \\ &=1 -\frac{e^{-s-1}}{-s-1} \\ \end{align*} $$ \mathcal L\{f(t)\}= \begin{cases} \frac{-e^{-s}+1}{s}-\frac{e^{-s-1}}{-s-1} & s\neq 0, s>-1 \\ 1-\frac{e^{-s-1}}{-s-1} &s=0 \end{cases} $$ If there exists a transform for $s>a$, the original function multiplied by $e^{-bt}$ exists for $s>a+b$. $$\mathcal L\{f(t)\}=F(s), s>a\implies \mathcal L\{e^{-bt}f(t)\}=F(s),s>a+b$$ ### Inverse transform The inverse is found by manipulating the equation until you can look it up in the [Laplace Table](#resources). The inverse transform is also **linear**. ### Inverse of rational polynomials If the transformed function can be expressed as a partial fraction decomposition, it is often easier to use linearity to reference the table. $$\mathcal L^{-1}\left\{\frac{P(s)}{Q(s)}\right\}$$ - $Q, P$ are polynomials - $\text{deg}(P) > \text{deg}(Q)$ - $Q$ is factored ??? example \begin{align*} \mathcal L^{-1}\left\{\frac{s^2+9s+2}{(s-1)(s^2+2s-3)}\right\} &=\mathcal L^{-1}\left\{\frac{A}{s-1}+\frac{B}{s+3} + \frac{Cs+D}{(s-1)^2}\right\} \\ &\implies A=2,B=3,C=-1 \\ &=2\mathcal L^{-1}\left\{\frac{1}{s-1}\right\} + 3\mathcal L^{-1}\left\{\frac{1}{(s-1)^2}\right\}-\mathcal L^{-1}\left\{\frac{1}{s+3}\right\} \\ &=2e^t+3te^t-e^{-3t} \end{align*} ### Inverse of differentiable equations If a function $f$ is continuous on $[0,\infty)$ and its derivative $f'$ is piecewise continuous on $[0,\infty)$, for $s>a$: $$ \mathcal L\{ f'\}=s\mathcal L\{f\}-f(0) \\ \mathcal L\{ f''\} = s^2\mathcal L\{f\}-s\cdot f(0)-f'(0) $$ ### Solving IVPs Applying the Laplace transform to both sides of an IVP is valid to remove any traces of horrifying integration. !!! example \begin{align*} y''-y'-2y=0, y(0)=1, y'(0)=0 \\ \mathcal L\{y''-y'-2y\}&=\mathcal L\{0\} \\ s^2\mathcal L\{y\}-s\cdot y(0)-y'(0) - s\mathcal L\{y\} +y(0) - 2\mathcal L\{y\}&=0 \\ \mathcal L\{y\}(s^2-s-2)-s+1&=0 \\ \mathcal L\{y\}&=\frac{s-1}{(s-2)(s+1)} \\ &= \\ \mathcal L^{-1}\{\mathcal L\{y\}\}&=\mathcal L^{-1}\left\{ \frac 1 3\cdot\frac{1}{s-2} + \frac 2 3\cdot\frac{1}{s+1} \right\} \\ y&=\frac 1 3\mathcal L^{-1}\left\{\frac{1}{s-2}\right\} + \frac 2 3\mathcal L^{-1}\left\{\frac{1}{s+1}\right\} \\ \tag{from Laplace table}&=\frac 1 3 e^{2t} + \frac 2 3 e^{-t} \end{align*} ### Heaviside / unit step The Heaviside and unit step functions are identical: $$ H(t-c)=u(t-c)=u_c(t)=\begin{cases} 0 & t < c \\ 1 & t \geq c \end{cases} $$ Piecewise continuous functions can be manipulated into a single equation via the Heaviside function. For a Heaviside transform $\mathcal L\{u_c(t)g(t)\}$, if $g$ is defined on $[0,\infty)$, $c\geq 0$, and $\mathcal L\{g(t+c)\}$ exists for some $s>s_0$: $$ \mathcal L\{u_c(t)g(t)\}=e^{-sc}\mathcal L\{g(t+c)\},s>s_0 $$ Likewise, under the same conditions, shifting it twice restores it back to the original. $$ \mathcal L\{u_c(t)f(t-c)\}=e^{-sc}\mathcal L\{f\} $$ ### Convolution Convolution is a weird thingy that does weird things. $$(f*g)(t)=\int^t_0f(\tau)g(t-\tau)d\tau$$ It is commutative ($f*g=g*f$) and is useful in transforms: $$\mathcal L\{f*g\}=\mathcal L\{f\}\mathcal L\{g\}$$ !!! example To solve $4y''+y=g(t),y(0)=3, y'(0)=-7$: \begin{align*} 4\mathcal L\{y''\}+\mathcal L\{y\}&=\mathcal L\{g(t)\} \\ 4(s^2\mathcal L\{y\}-s\cdot y(0) - y'(0))+\mathcal L\{y\} &=\mathcal L\{g(t)\} \\ \mathcal L\{y\}(4s^2+1)-12s+28&=\mathcal L\{g(t)\} \\ \mathcal L\{y\}&=\frac{\mathcal L\{g(t)\}}{4s^2+1} + \frac{12s}{4s^2+1} - \frac{28}{4s^2+1} \\ y&=\mathcal L^{-1}\left\{\frac{1}{4s^2+1}\mathcal L\{g(t)\}\right\} + \mathcal L^{-1}\left\{3\frac{s}{s^2+\frac 1 4}\right\}-\mathcal L^{-1}\left\{7\frac{1}{s^2+\frac 1 4}\right\} \\ &= \mathcal L^{-1}\left\{\frac 1 2\mathcal L\left\{\sin\left(\tfrac 1 2 t\right)\right\}\mathcal L\{g(t)\} \right\}+3\cos\left(\tfrac 1 2 t\right)-14\sin\left(\tfrac 1 2t\right) \\ &=\frac 1 2\left(\sin\left(\tfrac 1 2 t\right)*g(t)\right)+3\cos\left(\tfrac 1 2 t\right)-14\sin\left(\tfrac 1 2t\right) \\ &=\frac 1 2\int^t_0\sin(\tfrac 1 2\tau)g(t-\tau)d\tau + 3\cos(\tfrac 1 2 t)-14\sin(\tfrac 1 2 t) \end{align*} ### Impulse The **impulse for duration $\epsilon$** is defined by the **dirac delta function**: $$ \delta_\epsilon(t)=\begin{cases} \frac 1\epsilon & \text{if }0\leq t\leq\epsilon \\ 0 & \text{else} \end{cases} $$ As $\epsilon\to 0, \delta_\epsilon(t)\to\infty$. Thus: $$ \delta(t-a)=\begin{cases} \infty & \text{if }t=a \\ 0 & \text{else} \end{cases} \\ \boxed{\int^\infty_0\delta(t-a)dt=1} $$ If a function is continuous, multiplying it by the impulse function is equivalent to turning it on at that particular point. For $a\geq 0$: $$\boxed{\int^\infty_0\delta(t-a)dt=g(a)}$$ Thus we also have: $$\mathcal L\{\delta (t-a)\}=e^{-as}\implies\mathcal L^{-1}\{1\}=\delta(t)$$ ## Heat flow The temperature of a tube from $x=0$ to $x=L$ can be represented by the following DE: $$\text{temp}=u(x,t)=\boxed{u_t=a^2u_{xx}},00$$ Two boundary conditions are requred to solve the problem for all $t>0$ — that at $t=0$ and at $x=0,x=L$. - $u(x,0)=f(x),0\leq x\leq L$ - e.g., $u(0,t)=u(L,t)=0,t>0$ Thus the general solution is: $$ \boxed{u(x,t)=\sum^\infty_{n=1}a_ne^{-\left(\frac{n\pi a}{L}\right)^2t}\sin(\frac{n\pi x}{L})} \\ f(x)=\sum^\infty_{n=1}a_n\sin(\frac{n\pi x}{L}) $$ ### Periodicity The **period** of a function is an increment that always returns the same value: $f(x+T)=f(x)$, and its **fundamental period** of a function is the smallest possible period. !!! example The fundamental period of $\sin x$ is $2\pi$, but any $2\pi K,k\in\mathbb N$ is a period. The fundamental periods of $\sin \omega x$ and $\cos\omega x$ are both $\frac{2\pi}{\omega}$. If functions $f$ and $g$ have a period $T$, then both $af+bg$ and $fg$ also must have period $T$. #### Manipulating polarity - even: $\int^L_{-L}f(x)dx=2\int^L_0f(x)dx$ - odd: $\int^L_{-L}f(x)dx=0$ - even × even = even - odd × odd = even - even × odd = odd ## Orthogonality $$\int^L_{-L}\cos(\frac{m\pi x}{L})\sin(\frac{n\pi x}{L})dx=0$$ $$ \int^L_{-L}\cos(\frac{m\pi x}{L})(\frac{n\pi x}{L})dx=\begin{cases} 2L & \text{if }m=n=0 \\ L & \text{if }m=n\neq 0 \\ 0 & \text{if }m\neq n \end{cases} $$ $$ \int^L_{-L}\sin(\frac{m\pi x}{L}\sin(\frac{n\pi x}{L})dx=\begin{cases} L & \text{if }m=n \\ 0 & \text{if }m\neq n \end{cases} $$ Functions are **orthogonal** on an interval when the integral of their product is zero, and a set of functions is **mutually orthogonal** if all functions in the set are orthogonal to each other. If a Fourier series converges to $f(x)$: $$f(x)=\frac{a_0}{2} + \sum^\infty_{n=1}\left(a_n\cos(\frac{n\pi x}{L})+b_n\sin(\frac{n\pi x}{L})\right)$$ The **Euler-Fourier** formulae must apply: $$ \boxed{a_n=\frac 1 L\int^L_{-L}f(x)\cos(\frac{n\pi x}{L})dx} \\ \\ \boxed{b_n=\frac 1 L\int^L_{-L}f(x)\sin(\frac{n\pi x}{L})dx} $$ !!! example The Fourier series for the square wave function: $f(x)=\begin{cases}-1 & -\pi < x < 0 \\ 1 & 0 < x < \pi\end{cases}$ The period is clearly $2\pi\implies L=\pi$. $f(x)$ is also odd, by inspection. \begin{align*} a_n&=\frac 1\pi\int^\pi_{-\pi}\underbrace{f(x)\cos(\frac{n\pi x}{\pi})}_\text{odd × even = odd}dx=0=a_0 \\ b_n&=\frac 1 \pi\int^\pi_{-\pi}f(x)\sin(\frac{n\pi x}{\pi})dx \\ \tag{even}&=\frac 2\pi\int^\pi_0f(x)\sin(nx)dx \\ \tag{$f(x)>1$ when $x>0$}&=\frac 2\pi\int^\pi_0\sin(nx)dx \\ &=\frac 2\pi\left[\frac{-\cos nx}{n}\right]^\pi_0 \\ &=\begin{cases} \frac{4}{\pi n} & \text{if $n$ is odd} \\ 0 & \text{else} \end{cases} \therefore f(x)&=\sum^\infty_{n=1}\frac 2\pi\left(\frac{1-(-1)^n}{n}\sin(nx)\right) \\ \tag{only odd $n$s are non-zero}&=\frac4\pi\sum^\infty_{n=1}\frac{1}{2n-1}\sin[(2n-1)x] \end{align*} Thus the Fourier series is $$. ### Separation of variables To solve IBVPs, where $X(x)$ and $T(t)$ are exclusively functions of their respective variables: $$u(x,t)=X(x)T(t)$$ Substituting it into the IBVP results in a **separation constant** $-\lambda$. $$\boxed{\frac{T'(t)}{a^2T(t)}=\frac{X''(x)}{X(x)}=-\lambda}$$ Possible values for the separation constant are known as **eigenvalues**, and their corresponding **eigenfunctions** contain the unknown constant $a_n$: $$ \lambda_n=\left(\frac{n\pi}{L}\right)^2 \\ X_n(x)=a_n\sin(\frac{n\pi x}{L}) $$ ### Wave equation A string stretched between two secured points at $x=0$ and $x=L$ can be represented by the following IBVP: $$ u_{tt}=a^2u_{xx},00 \\ u(0,t)=u(L,t)=0,t>0 \\ u(x,0)=f(x), 0\leq x\leq L \\ u_t(x,0)=g(x), 0\leq x\leq L $$ The following conditions must be met: $$ u(x,t)=\sum^\infty_{n=1}\sin(\frac{n\pi x}{L})\left(\alpha_n\cos(\frac{n\pi a}{L}t)+\beta_n\sin(\frac{n\pi a}{L}t)\right) \\ \boxed{f(x)=\sum^\infty_{n=1}\alpha_n\sin(\frac{n\pi x}{L}),0\leq x\leq L} \\ \boxed{g(x)=\sum^\infty_{n=1}\frac{n\pi a}{L}\beta_n\sin(\frac{n\pi x}{L}), 0\leq x\leq L} $$ ### Fourier symmetry To find a Fourier series for functions defined only on $[0, L]$ instead of $[-L, L]$, a **periodic extension** can be used. A **half-range sine expansion (HRS)** is used for odd functions: $$ f_o(x)=\begin{cases} f(x) & x\in(0, L) \\ -f(-x) & x\in(-L, 0) \end{cases} $$ A **half-range cosine expansion (HRC)** is used for even functions: $$ f_e(x)=\begin{cases} f(x) & x\in(0, L) \\ f(-x) & x\in(-L, 0) \end{cases} $$ Thus if a Fourier series on $(0,L)$ exists, it can be expressed as either a **Fourier sine series** (via HRS) or a **Fourier cosine series** (via HRC). !!! example For $f(x)=\begin{cases}\frac\pi 2 & [0,\frac\pi 2] \\ x-\frac\pi 2 & (\frac\pi2,\pi]\end{cases}$: \begin{align*} a_n&=\frac 2 L\int^L_0f(x)\cos(\frac{n\pi x}{L})dx \\ &=\frac 2\pi \int^{\pi/2}_0\frac\pi 2\cos(\frac{n\pi x}{\pi})dx + \frac 2 \pi\int^\pi_{\pi/2}(x-\frac\pi2)\cos(\frac{n\pi x}{\pi})dx \\ &=\frac{2}{n^2\pi}[(-1)^n-\cos(\frac{n\pi}{2})+\frac{n\pi}{2}\sin(\frac{n\pi}{2}) \\ \\ a_0&=\frac2\pi\int^\pi_0f(x)\cos(0)dx \\ &=\frac{3\pi}{4} \\ \\ \therefore f(x)&=\frac{3\pi}{8}+\sum^\infty_{n=1}\frac{2}{n^2\pi^2}[(-1)^n-\cos(\frac{n\pi}{2})+\frac{n\pi}{2}\sin(\frac{n\pi}{2})]\cos(nx),x\in[0,\pi] \end{align*} !!! example For: $$ u_t=2u_{xx},00 \\ u(x,0)=\begin{cases} \frac\pi 2 & [0,\frac\pi 2] \\ x-\frac\pi 2 & (\frac\pi 2,\pi] \end{cases} $$ We have $L=\pi,a=\sqrt 2$. \begin{align*} u(x,t)&=\sum^\infty_{n=1}\alpha_ne^{left(\frac{n\pi\sqrt 2}{\pi}\right)^2t}\sin(\frac{n\pi x}{\pi}) &=\sum^\infty_{n=1}\alpha_ne^{-2n^2t}\sin(nx) \\ \alpha_n&=\frac 2 L\int^L_0f(x)\sin(\frac{n\pi x}{L})dx \\ &=\frac2\pi\int^{\pi/2}_0\frac\pi 2\sin(nx)dx+\frac2\pi\int^\pi_{\pi/2}(x-\frac\pi2\sin(nx)dx \\ &=\frac 1 n[1+(-1)^{n+1}-\cos(\frac{n\pi}{2})-\frac{2}{n\pi}\sin(\frac{n\pi}{2}] \end{align*} ### Convergence of Fourier series !!! definition - $f(x^+)=\lim_{h\to0^+}f(x+h)$ - $f(x^-=\lim_{h\to0^-}f(x+h)$ If $f$ and $f'$ are piecewise continuous on $[-L, L]$ for $x\in(-L,L)$, where $a_n$ and $b_n$ are from the Euler-Fourier formulae: $$\frac{a_0}{2}+\sum^\infty_{n=1}a_n\cos(\frac{n\pi x}{L})+b_n\sin(\frac{n\pi x}{L})=\boxed{\frac 1 2[f(x^+)+f(x^-)]}$$ At $x=\pm L$, the series converges to $\frac 1 2[f(-L^+)+f(L^-)]$. This implies: - A continuous $f$ converges to $f(x)$ - A discontinuous $f$ has the Fourier series converge to the average of the left and right limits - Extending $f$ to infinity using periodicity allows it to hold for all $x$ !!! example The square wave function $f(x)=\begin{cases}-1 & -\pi0$, there exists an integer $N_0$ depending on $\epsilon$ such that $|f(x)-[\frac{a_0}{2}+\sum^N_{n=1}a_n\cos(\frac{n\pi x}{L})+b_n\sin(\frac{n\pi x}{L})]|<\epsilon$ for all $N\geq N_0$ and all $x\in(-\infty,\infty)$. More intuitively, for a high enough summation of the Fourier series, the value must lie in an **$\epsilon$-corridor** of $f(x)$ such that $f(x)$ is always between $f(x)\pm\epsilon$. !!! example - The Fourier series for the triangle wave function **is** uniformly convergent. - The Fourier series for the square wave function **is not** uniformly convergent, which means that Gibbs overshoots would not fit in an arbitrarily small $\epsilon$-corridor. The **Weierstrass M-test** states that if $|a_n(x)|\leq M_n$ for all $x\in[a,b]$ and if $\sum^\infty_{n=1}M_n$ converges, then $\sum^\infty_{n=1}a_n(x)$ converges uniformly to $f(x)$ on $[a,b]$. !!! example $\sum^\infty_{n=1}\frac{1}{n^2}\cos(nx)$ converges uniformly on any finite closed interval $[a,b]$. $|\frac{\cos(nx)}{n^2}|\leq\frac{1}{n^2}$ for all $x$, and $\sum^\infty_{n=1}\frac{1}{n^2}$ also converges. Thus the result follows from the M-test. ### Differentiating Fourier series You can termwise differentiate the Fourier series of $f(x)$ only if: - $f(x)$ is continuous on $(-\infty,\infty)$ and 2L-periodic - $f'(x),f''(x)$ are both piecewise continuous on $[-L,L]$ You can termwise integrate the Fourier series of $f(x)$ only if $f(x)$ is piecewise continuous on $[-L,L]$. Then, for any $x\in[-L,L]$: $$\int^x_{-L}f(t)dt=\int^x_{-L}\frac{a_0}{2}dt+\sum^\infty_{n=1}\int^x_{-L}(a_n\cos(\frac{n\pi t}{L})+b_n\sin(\frac{n\pi t}{L}))dt$$ ### Complex Fourier series By employing Euler's theorem, sine and cosine can be transformed into exponential forms. $$ \cos(\frac{n\pi x}{L})=\frac{e^{i\frac{n\pi x}{L}} + e^{-i\frac{n\pi x}{L}}}{2} \\ \sin(\frac{n\pi x}{L})=\frac{-ie^{i\frac{n\pi x}{L}} + ie^{-i\frac{n\pi x}{L}}}{2} $$ Thus the **complex Fourier series** is given by: $$ f(x)=\sum^\infty_{n=-\infty}c_ne^{i\frac{n\pi x}{L}} \\ c_n=\frac{1}{2L}\int^L_{-L}f(x)e^{-i\frac{n\pi x}{L}}dx = \frac 1 2(a_n-ib_n) $$ To convert it to a real Fouier series: - $a_0=2c_0$ - $a_n=c_n+\overline{c_n}$ - $b_n=i(c_n-\overline{c_n})$ !!! example The complex Fourier series for the sawtooth wave function: $f(x)=x,-1