# MATH 119: Calculus 2 ## Multivariable functions !!! definition - A **multivariable function** accepts more than one independent variable, e.g., $f(x, y)$. The signature of multivariable functions is indicated in the form *[identifier]*: *[input type]* → *[return type]*. Where $n$ is the number of inputs: $$f: \mathbb R^n \to \mathbb R$$ !!! example The following function is in the form $f: \mathbb R^2\to\mathbb R$ and maps two variables into one called $z$ via function $f$. $$(x,y)\longmapsto z=f(x,y)$$ ### Sketching multivariable functions !!! definition - In a **scalar field**, each point in space is assigned a number. For example, topography or altitude maps are scalar fields. - A **level curve** is a slice of a three-dimensional graph by setting to a general variable $f(x, y)=k$. It is effectively a series of contour plots set in a three-dimensional plane. - A **contour plot** is a graph obtained by substituting a constant for $k$ in a level curve. Please see [level set](https://en.wikipedia.org/wiki/Level_set) and [contour line](https://en.wikipedia.org/wiki/Contour_line) for example images. In order to create a sketch for a multivariable function, this site does not have enough pictures so you should watch a YouTube video. !!! example For the function $z=x^2+y^2$: For each $x, y, z$: - Set $k$ equal to the variable and substitute it into the equation - Sketch a two-dimensional graph with constant values of $k$ (e.g., $k=-2, -1, 0, 1, 2$) using the other two variables as axes Combine the three **contour plots** in a three-dimensional plane to form the full sketch. A **hyperbola** is formed when the difference between two points is constant. Where $r$ is the x-intercept: $$x^2-y^2=r^2$$ If $r^2$ is negative, the hyperbola is is bounded by functions of $x$, instead. ## Limits of two-variable functions A function is continuous at $(x, y)$ if and only if all possible lines through $(x, y)$ have the same limit. Or, where $L$ is a constant: $$\text{continuous}\iff \lim_{(x, y)\to(x_0, y_0)}f(x, y) = L$$ In practice, this means that if any two paths result in different limits, the limit is undefined. Substituting $x|y=0$ or $y=mx$ or $x=my$ are common solutions. !!! example For the function $\lim_{(x, y)\to (0,0)}\frac{x^2}{x^2+y^2}$: Along $y=0$: $$\lim_{(x,0)\to(0, 0)} ... = 1$$ Along $x=0$: $$\lim_{(0, y)\to(0, 0)} ... = 0$$ Therefore the limit does not exist. ## Partial derivatives Partial derivatives have multiple different symbols that all mean the same thing: $$\frac{\partial f}{\partial x}=\partial_x f=f_x$$ For two-input-variable equations, setting one of the input variables to a constant will return the derivative of the slice at that constant. By definition, the **partial** derivative of $f$ with respect to $x$ (in the x-direction) at point $(a, B)$ is: $$\frac{\partial f}{\partial x}(a, B)=\lim_{h\to 0}\frac{f(a+h, B)-f(a, B)}{h}$$ Effectively: - if finding $f_x$, $y$ should be treated as constant. - if finding $f_y$, $x$ should be treated as constant. !!! example With the function $f(x,y)=x^2\sqrt{y}+\cos\pi y$: \begin{align*} f_x(1,1)&=\lim_{h\to 0}\frac{f(1+h,1)-f(1,1)} h \\ \tag*{$f(1,1)=1+\cos\pi=0$}&=\lim_{h\to 0}\frac{(1+h)^2-1} h \\ &=\lim_{h\to 0}\frac{h^2+2h} h \\ &= 2 \\ \end{align*} ### Higher order derivatives !!! definition - **wrt.** is short for "with respect to". $$\frac{\partial^2f}{\partial x^2}=\partial_{xx}f=f_{xx}$$ Derivatives of different variables can be combined: $$f_{xy}=\frac{\partial}{\partial y}\frac{\partial f}{\partial x}=\frac{\partial^2 f}{\partial xy}$$ The order of the variables matter: $f_{xy}$ is the derivative of f wrt. x *and then* wrt. y. **Clairaut's theorem** states that if $f_x, f_y$, and $f_{xy}$ all exist near $(a, b)$ and $f_{yx}$ is continuous **at** $(a,b)$, $f_{yx}(a,b)=f_{x,y}(a,b)$ and exists. !!! warning In multivariable calculus, **differentiability does not imply continuity**. ### Linear approximations A **tangent plane** represents all possible partial derivatives at a point of a function. For two-dimensional functions, the differential could be used to extrapolate points ahead or behind a point on a curve. $$ \Delta f=f'(a)\Delta d \\ \boxed{y=f(a)+f'(a)(x-a)} $$ The equations of the two unit direction vectors in $x$ and $y$ can be used to find the normal of the tangent plane: $$ \vec n=\vec d_1\times\vec d_2 \\ \begin{bmatrix}-f_x(a,b) \\ -f_y(a,b) \\ 1\end{bmatrix} = \begin{bmatrix}1\\0\\f_x(a,b)\end{bmatrix} \begin{bmatrix}0\\1\\f_y(a,b)\end{bmatrix} $$ Therefore, the general expression of a plane is equivalent to: $$ z=C+A(x-a)+B(x-b) \\ \boxed{z=f(a,b)+f_x(a,b)(x-a)+f_y(a,b)(y-b)} $$ ??? tip "Proof" The general formula for a plane is $c_1(x-a)+c_2(y-b)+c_3(z-c)=0$. If $y$ is constant such that $y=b$: $$z=C+A(x-a)$$ which must represent in the x-direction as an equation in the form $y=b+mx$. It follows that $A=f_x(a,b)$. A similar concept exists for $f_y(a,b)$. If both $x=a$ and $y=b$ are constant: $$z=C$$ where $C$ must be the $z$-point. Usually, functions can be approximated via the **tangent at $x=a$.** $$f(x)\simeq L(x)$$ !!! warning Approximations are less accurate the stronger the curve and the farther the point is away from $f(a,b)$. A greater $|f''(a)|$ indicates a stronger curve. !!! example Given the function $f(x,y)=\ln(\sqrt[3]{x}+\sqrt[4]{y}-1)$, $f(1.03, 0.98)$ can be linearly approximated. $$ L(x=1.03, y=0.98)=f(1,1)=f_x(1,1)(x-1)+f_y(1,1)(y-1) \\ f(1.03,0.98)\simeq L(1.03,0.98)=0.005 $$