$`\because \dfrac{1}{3}`$ and $`\dfrac{-2}{3}`$ are the roots of a quadratic equation, that must mean that $`(x-\dfrac{1}{3})(x+\dfrac{2}{3})`$ is a quadratic equation that
gives those roots. Here we make $`a=1`$, so its easy to find a quadratic in vertex from that gives these roots.
Let the vertex form then be $`y=(x-d)^2+c`$, since $`a=1`$.
We know $`d=\dfrac{r_1+r_2}{2}`$ because it is the x-coordinate of the vertex which is also the AOS. Therefore it is equal to $`\dfrac{\dfrac{1}{3} + \dfrac{-2}{3}}{2} = \dfrac{-1}{6}`$
Then, we know $`c=(d-\dfrac{1}{3})(d+\dfrac{2}{3})`$, since by plugging in the x-coordinate of the vertex, we get the y-coordinate of the vertex which is also the $`c`$ value.