**2. Determine the length of** $`AB`$ **for** $`\triangle ABC`$, **where** $`D`$ **is on segment** $`AC`$, and $`AD = 7, DC = 3,BC = 5`$
- $`\because 3^2 + 4^2 = 5^2 `$
- $`\therefore BD = 4`$
- $`\because \angle{ADB} = 90\degree`$
- $`\therefore BA = BD^2 + 7^2`$
- $`\therefore BA = \sqrt{4^2 + 7^2}`$
- $`BA = \sqrt{65}`$
- The length of $`AB`$ is $`\sqrt{65}`$
**3. Line 1 goes through the points** $`(-3, -7)`$ **and** $`(9, 1)`$. **Line 2 is perpendicular to** $`3x-4y+8 = 0`$ **and has a y-intercept of** $`7`$. **Determine the point of intersection of line 1 and line 2**.