diff --git a/Grade 10/Math/MPM2DZ/Unit 2: Quadratic Equations.md b/Grade 10/Math/MPM2DZ/Unit 2: Quadratic Equations.md index 6419cfe..bf23ee8 100644 --- a/Grade 10/Math/MPM2DZ/Unit 2: Quadratic Equations.md +++ b/Grade 10/Math/MPM2DZ/Unit 2: Quadratic Equations.md @@ -77,10 +77,29 @@ x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ - $`a+bi`$ and $`a-bi`$ are conjugates(same term with opposite signs). - Complex roots of a quadratic quation occurs in **conjugate pairs**, recall discriminant, if its less than 0, there are 2 complex roots that are **conjugates** ($`a \pm bi`$) +|Complex Number|Equivalent| +|:--------------|:---------| +|$`i`$|$`\sqrt{-1}`$| +|$`i^2`$|$`-1`$| +|$`i^3`$|$`-\sqrt{-1}`$ or $`-i`$| +|$`i^4`$|$`1`$| + ## Number Systems +- **Natural Numbers** $`\mathbb{N} = \{1,2,3, \cdots\}`$ +- **Whole Numbers** $`\mathbb{W} = \{0, 1, 2, 3\cdots\}`$ +- **Integers** $`(\mathbb{I}`$ or $`\mathbb{Z}) = \{\cdots, -2, -1, 0,1,2, \cdots\}`$ +- **Rational numbers** $`(\mathbb{Q}) = \{\frac{a}{b}, a, b, \in \mathbb{I}, b =\not 0\}`$ +- **Irrational Numbers** $`(\mathbb{Q} \prime)`$: any real number that cannot be written as $`\frac{a}{b}, a, b, \in \mathbb{I}, b =\not 0`$ +- **Real Numbers** $`(\mathbb{R})`$: the set of $`\mathbb{Q} \cup \mathbb{Q} \prime`$ +- **Complex Numbers** $`\mathbb{C}`$: any number that can be expressed in the form $`a+ib`$ (includes the set of real numbers) - +## Radical Equations +- `Extraneous Sol` $`\rightarrow`$ $`LS =\not RS`$ +- `Inadmissable Sol` $`\rightarrow`$ Solutions you reject due to problem statement, eg negative length. +- `Extraneous values` occur because squaring both sides of an equation is not a reversible step. +- Make sure to check your work after working with radical equations, since squaring both sides is not a reversible step. Thus equations must be verified by pluging it back into the equation. +- **Radical Equations** are called that because the variable occurs under a radical sign. We **rationalize** the radical variable before continuing to slve the equation.