mirror of
https://gitlab.com/magicalsoup/Highschool.git
synced 2025-01-23 16:11:46 -05:00
Update Final_Exam_Study_Sheet.md
This commit is contained in:
parent
50e7bd45e8
commit
1c74d2b042
@ -136,9 +136,9 @@
|
||||
|
||||
## Scientific Notation
|
||||
- They convey accuracy and precision. It can either be written as its original number or in scientific notation:
|
||||
- 555 (**Exact**) or 5.55 x 10<sup>2</sup> (**3 significant figures**).
|
||||
- In scientific notation, values are written in the form **a(10<sup>n</sup>)**, where ```a``` is a number within 1 and 10 and ```n``` is any integer.
|
||||
- Some examples include the following: 5.4 x 10<sup>3</sup>, 3.0 x 10<sup>2</sup>, and 4.56 x 10<sup>-4</sup>.
|
||||
- 555 (**Exact**) or $`5.55 \times 10^2`$ (**3 significant figures**).
|
||||
- In scientific notation, values are written in the form $`a(10^n)`$, where $`a`$ is a number within 1 and 10 and $`n`$ is any integer.
|
||||
- Some examples include the following: $`5.4 \times 10^3, 3.0 \times 10^2`$, and $`4.56 \times 10^{-4}`$.
|
||||
- When the number is smaller than 1, a negative exponent is used, when the number is bigger than 10, a positve exponent is used
|
||||
|
||||
- <img src="https://embedwistia-a.akamaihd.net/deliveries/d2de1eb00bafe7ca3a2d00349db23a4117a8f3b8.jpg?image_crop_resized=960x600" width="500">
|
||||
@ -340,20 +340,20 @@ x, & \text{if } x > 0\\
|
||||
## 2D Geometry Equations
|
||||
|Shape|Formula|Picture|
|
||||
|:----|:------|:------|
|
||||
|Rectangle|```Area```: lw <br> ```Perimeter```: 2(l+w)|<img src="https://lh5.googleusercontent.com/Ib1Evz5PUwd4PzRmFkHj9IY2Is-UthHoUyyiEHAzkJP-296jZvMmHJM1Kws4PmuTeYHV2ZBIJenc4W1pKtsSHvU82lyjOed2XKBb1PWnoaeJ3sSPuaJgSTg8JWbxrvplabCanvTD" width="200">|
|
||||
|Triangle|```Area```: bh/2 <br> ```Perimeter```: a+b+c|<img src="https://lh6.googleusercontent.com/covvHwXxQhrK2Hr0YZoivPkHodgstVUpAQcjpg8sIKU25iquSHrRd2EJT64iWLsg_75WnBw4T9P0OTBiZDkpqEkXxflZQrL16sNhcFfet_z4Mw5EPFgdx_4HzsagV0Sm5jN6EKr_" width="200">|
|
||||
|Circle|```Area```: πr<sup>2</sup> <br> ```Circumference```: 2πr or πd|<img src="https://lh5.googleusercontent.com/RydffLVrOKuXPDXO0WGPpb93R8Ucm27qaQXuxNy_fdEcLmuGZH4eYc1ILNmLEx8_EYrRuOuxFavtL9DF1lTWYOx9WaYauVlu0o_UR6eZLeGewGjFNUQSK8ie4eTm1BMHfRoQWHob" width="200">|
|
||||
|Trapezoid|```Area```: (a+b)h/2 <br> ```Perimeter```: a+b+c+d|<img src="https://lh6.googleusercontent.com/_nceVtFlScBbup6-sPMulUTV3MMKu1nonei0D1WY-KRkpHSbPCIWgDO8UGDQBGKh8i0dkAqOhFUHl7YHCFOt6AMRSJiXALlBBY0mBo1MMZxHRVcg8DknSlv4ng7_QswcZtaRwrJb" width="200">|
|
||||
|Rectangle|```Area```: $`lw`$ <br> ```Perimeter```: $`2(l+w)`$|<img src="https://lh5.googleusercontent.com/Ib1Evz5PUwd4PzRmFkHj9IY2Is-UthHoUyyiEHAzkJP-296jZvMmHJM1Kws4PmuTeYHV2ZBIJenc4W1pKtsSHvU82lyjOed2XKBb1PWnoaeJ3sSPuaJgSTg8JWbxrvplabCanvTD" width="200">|
|
||||
|Triangle|```Area```: $`\frac{bh}{2}`$ <br> ```Perimeter```: $`a+b+c`$|<img src="https://lh6.googleusercontent.com/covvHwXxQhrK2Hr0YZoivPkHodgstVUpAQcjpg8sIKU25iquSHrRd2EJT64iWLsg_75WnBw4T9P0OTBiZDkpqEkXxflZQrL16sNhcFfet_z4Mw5EPFgdx_4HzsagV0Sm5jN6EKr_" width="200">|
|
||||
|Circle|```Area```: $`πr^2`$ <br> ```Circumference```: $`2πr`$ or $`πd`$|<img src="https://lh5.googleusercontent.com/RydffLVrOKuXPDXO0WGPpb93R8Ucm27qaQXuxNy_fdEcLmuGZH4eYc1ILNmLEx8_EYrRuOuxFavtL9DF1lTWYOx9WaYauVlu0o_UR6eZLeGewGjFNUQSK8ie4eTm1BMHfRoQWHob" width="200">|
|
||||
|Trapezoid|```Area```: $` \frac{(a+b)h}{2}`$ <br> ```Perimeter```: $`a+b+c+d`$|<img src="https://lh6.googleusercontent.com/_nceVtFlScBbup6-sPMulUTV3MMKu1nonei0D1WY-KRkpHSbPCIWgDO8UGDQBGKh8i0dkAqOhFUHl7YHCFOt6AMRSJiXALlBBY0mBo1MMZxHRVcg8DknSlv4ng7_QswcZtaRwrJb" width="200">|
|
||||
|
||||
## 3D Geometry Equations
|
||||
|3D Object|Formula|Picture|
|
||||
|:----|:------|:------|
|
||||
|Rectangular Prism|```Volume```: lwh <br> ```SA```: 2(lw+lh+wh)|<img src="https://lh6.googleusercontent.com/-mqEJ4AMk3xDPfqH5kdVukhtCGl3fgTy2ojyAArla54c7UoAnqKW_bsYSaFySXLplE59pqLIg5ANZAL1f6UEejsrKJwQCfyO7gwUQmSDoJJtQG_WkfHcOFDjidXV4Y4jfU2iA5b-" width="200">|
|
||||
|Square Based Pyramid|```Volume```: <sup>1</sup>⁄<sub>3</sub>b<sup>2</sup>h <br> ```SA```: 2bs+b<sup>2</sup>|<img src="https://lh5.googleusercontent.com/iqaaJtx-Kx4vFT3Yp6YLOmpDFL7_qk2uh0Z21pgPJMDRgchiUBcHeTWkMrR9mFjxCj8w7za1xwN9bo4UFACPZRMSl-V67uPv9FvDyNJVjedmeehx5K-iUK9sBhObhNsLJpNItkg0" width="200">|
|
||||
|Sphere|```Volume```: <sup>4</sup>⁄<sub>3</sub>πr<sup>3</sup> <br> ```SA```: 4πr<sup>2</sup>|<img src="https://lh6.googleusercontent.com/DL6ViJLbap2dcSAlZnYKR7c33033g8WuJVvqz0KpzCyIJ0wXyrh5ejoLhrTxlX9uASQlxPmihm8doU1sNbaQxqBcTaPnP-lC6LUrPqzPNi11AHiHQAu3ag7uIGcwzkdC9e5uo1en" width="200">|
|
||||
|Cone|```Volume```: <sup>1</sup>⁄<sub>3</sub>πr<sup>2</sup>h <br> ```SA```: πrs+πr<sup>2</sup>|<img src="https://lh5.googleusercontent.com/V3iZzX8ARcipdJiPPFYso_il3v_tcrYHZlFnq3qkekRSVBVcj8OzWxMuBqN45aHbv6y-fDH4uY11Gus3KMrvf_Z_TvsfJCwZZ19Ezf7Yj6DzVirp-Gx3V0Qy793ooUwTDmdKW_xq" width="200">|
|
||||
|Cylinder|```Volume```: πr<sup>2</sup>h <br> ```SA```: 2πr<sup>2</sup>+2πh|<img src="https://lh5.googleusercontent.com/4uWukD3oNUYBG-fLX2-g58X8at0h74al7BJI5l78LZ0Bu9nXuZnt9dp9xiETeLTqykP-WWFdO_H5by4RkgDVxSENZgootSrAsOUoY2RWubflNOAau1bVFgm9YIe59SmiFlyxwgDV" width="200">|
|
||||
|Triangular Prism|```Volume```: ah+bh+ch+bl <br> ```SA```: <sup>1</sup>⁄<sub>2</sub>blh|<img src="https://lh3.googleusercontent.com/_oRUVgfdksfUXGKQk3AtrtY70E8jEq-RRK-lB9yKc_Rtio2f2utGAY-rI4UqjWEeTzUoN_r7EiqdZZeeE12EY-fiV55QQKdvnv4y4VaxQ9xt9Izugp6Ox_LqIUpQzPKVldptgKWm" width="200">|
|
||||
|Rectangular Prism|```Volume```: $`lwh`$ <br> ```SA```: $`2(lw+lh+wh)`$|<img src="https://lh6.googleusercontent.com/-mqEJ4AMk3xDPfqH5kdVukhtCGl3fgTy2ojyAArla54c7UoAnqKW_bsYSaFySXLplE59pqLIg5ANZAL1f6UEejsrKJwQCfyO7gwUQmSDoJJtQG_WkfHcOFDjidXV4Y4jfU2iA5b-" width="200">|
|
||||
|Square Based Pyramid|```Volume```: $`\frac{1}{3} b^2 h`$ <br> ```SA```: $`2bs+b^2`$|<img src="https://lh5.googleusercontent.com/iqaaJtx-Kx4vFT3Yp6YLOmpDFL7_qk2uh0Z21pgPJMDRgchiUBcHeTWkMrR9mFjxCj8w7za1xwN9bo4UFACPZRMSl-V67uPv9FvDyNJVjedmeehx5K-iUK9sBhObhNsLJpNItkg0" width="200">|
|
||||
|Sphere|```Volume```: $`\frac{4}{3} πr^3`$ <br> ```SA```: $`4πr^2`$|<img src="https://lh6.googleusercontent.com/DL6ViJLbap2dcSAlZnYKR7c33033g8WuJVvqz0KpzCyIJ0wXyrh5ejoLhrTxlX9uASQlxPmihm8doU1sNbaQxqBcTaPnP-lC6LUrPqzPNi11AHiHQAu3ag7uIGcwzkdC9e5uo1en" width="200">|
|
||||
|Cone|```Volume```: $` \frac{1}{3} πr^2 h`$ <br> ```SA```: $`πrs+πr^2`$|<img src="https://lh5.googleusercontent.com/V3iZzX8ARcipdJiPPFYso_il3v_tcrYHZlFnq3qkekRSVBVcj8OzWxMuBqN45aHbv6y-fDH4uY11Gus3KMrvf_Z_TvsfJCwZZ19Ezf7Yj6DzVirp-Gx3V0Qy793ooUwTDmdKW_xq" width="200">|
|
||||
|Cylinder|```Volume```: $`πr^2h`$ <br> ```SA```: $`2πr^2+2πh`$|<img src="https://lh5.googleusercontent.com/4uWukD3oNUYBG-fLX2-g58X8at0h74al7BJI5l78LZ0Bu9nXuZnt9dp9xiETeLTqykP-WWFdO_H5by4RkgDVxSENZgootSrAsOUoY2RWubflNOAau1bVFgm9YIe59SmiFlyxwgDV" width="200">|
|
||||
|Triangular Prism|```Volume```: $`ah+bh+ch+bl`$ <br> ```SA```: $` \frac{1}{2} blh`$|<img src="https://lh3.googleusercontent.com/_oRUVgfdksfUXGKQk3AtrtY70E8jEq-RRK-lB9yKc_Rtio2f2utGAY-rI4UqjWEeTzUoN_r7EiqdZZeeE12EY-fiV55QQKdvnv4y4VaxQ9xt9Izugp6Ox_LqIUpQzPKVldptgKWm" width="200">|
|
||||
|
||||
|
||||
## Optimization (For Maximimizing Area/Volume, or Minimizing Perimeter/Surface Area)
|
||||
@ -362,18 +362,18 @@ x, & \text{if } x > 0\\
|
||||
|
||||
|Shape|Maximum Area|Minimum Perimeter|
|
||||
|:----|:-----------|:----------------|
|
||||
|4-sided rectangle|A rectangle must be a square to maximaze the area for a given perimeter. The length is equal to the width<br>A = lw<br>A<sub>max</sub> = (w)(w)<br>A<sub>max</sub> = w<sup>2</sup>|A rectangle must be a square to minimaze the perimeter for a given area. The length is equal to the width.<br>P = 2(l+w)<br>P<sub>min</sub> = 2(w)(w)<br>P<sub>min</sub> = 2(2w)<br>P<sub>min</sub> = 4w|
|
||||
|3-sided rectangle|l = 2w<br>A = lw<br>A<sub>max</sub> = 2w(w)<br>A<sub>max</sub> = 2w<sup>2</sup>|l = 2w<br>P = l+w2<br>P<sub>min</sub> = 2w+2w<br>P<sub>min</sub> = 4w|
|
||||
|4-sided rectangle|A rectangle must be a square to maximaze the area for a given perimeter. The length is equal to the width<br>$`A = lw`$<br>$`A_{max} = (w)(w)`$<br>$`A_{max} = w^2`$|A rectangle must be a square to minimaze the perimeter for a given area. The length is equal to the width.<br>$`P = 2(l+w)`$<br>$`P_{min} = 2(w)(w)`$<br>$`P_{min} = 2(2w)`$<br>$`P_{min} = 4w`$|
|
||||
|3-sided rectangle|$`l = 2w`$<br>$`A = lw`$<br>$`A_{max} = 2w(w)`$<br>$`A_{max} = 2w^2`$|$`l = 2w`$<br>$`P = l+2w`$<br>$`P_{min} = 2w+2w`$<br>$`P_{min} = 4w`$|
|
||||
|
||||
|
||||
### 3D Objects
|
||||
|
||||
|3D Object|Maximum Volumne|Minimum Surface Area|
|
||||
|:--------|:--------------|:-------------------|
|
||||
|Cylinder(closed-top)|The cylinder must be similar to a cube where h = 2r<br>V = πr<sup>2</sup>h<br>V<sub>max</sub> = πr<sup>2</sup>(2r)<br>V<sub>max</sub> = 2πr<sup>3</sup>|The cylinder must be similar to a cube where h = 2r<br>SA = 2πr<sup>2</sup>+2πrh<br>SA<sub>min</sub> = 2πr<sup>2</sup>+2πr(2r)<br>SA<sub>min</sub> = 2πr<sup>2</sup>+4πr<sup>2</sup><br>SA<sub>min</sub> = 6πr<sup>2</sup>|
|
||||
|Rectangular Prism(closed-top)|The prism must be a cube, <br> where l = w = h<br>V = lwh<br>V<sub>max</sub> = (w)(w)(w)<br>V<sub>max</sub> = w<sup>3</sup>|The prism must be a cube, <br>where l = w = h<br>SA = 2lh+2lw+2wh<br>SA<sub>min</sub> = 2w<sup>2</sup>+2w<sup>2</sup>+2w<sup>2</sup><br>SA<sub>min</sub> = 6w<sup>2</sup>|
|
||||
|Cylinder(open-top)|h = r<br>V = πr<sup>2</sup>h<br>V<sub>max</sub> = πr<sup>2</sup>(r)<br>V<sub>max</sub> = πr<sup>3</sup>|h = r<br>SA = πr<sup>2</sup>+2πrh<br>SA<sub>min</sub> = πr<sup>2</sup>+2πr(r)<br>SA<sub>min</sub> = πr<sup>2</sup>+2πr<sup>2</sup><br>SA<sub>min</sub> = 3πr<sup>2</sup>|
|
||||
|Square-Based Rectangular Prism(open-top)|h = w/2<br>V = lwh<br>V<sub>max</sub> = (w)(w)(<sup>w</sup>⁄<sub>2</sub>)<br>V<sub>max</sub> = <sup>w<sup>3</sup></sup>⁄<sub>2</sub>|h = w/2<br>SA = w<sup>2</sup>+4wh<br>SA<sub>min</sub> = w<sup>2</sup>+4w(<sup>w</sup>⁄<sub>2</sub>)<br>SA<sub>min</sub> = w<sup>2</sup>+2w<sup>2</sup><br>SA<sub>min</sub> = 3w<sup>2</sup>|
|
||||
|Cylinder(closed-top)|The cylinder must be similar to a cube where $`h = 2r`$<br>$`V = πr^2h`$<br>$`V_{max} = πr^2(2r)`$<br>$`V_{max} = 2πr^3`$|The cylinder must be similar to a cube where $`h = 2r`$<br>$`SA = 2πr^2+2πrh`$<br>$`SA_{min} = 2πr^2+2πr(2r)`$<br>$`SA_{min} = 2πr^2+4πr^2`$<br>$`SA_{min} = 6πr^2`$|
|
||||
|Rectangular Prism(closed-top)|The prism must be a cube, <br> where $`l = w = h`$<br>$`V = lwh`$<br>$`V_{max} = (w)(w)(w)`$<br>$`V_{max} = w^3`$|The prism must be a cube, <br>where $`l = w = h`$<br>$`SA = 2lh+2lw+2wh`$<br>$`SA_{min} = 2w^2+2w^2+2w^2`$<br>$`SA_{min} = 6w^2`$|
|
||||
|Cylinder(open-top)|$`h = r`$<br>$`V = πr^2h`$<br>$`V_{max} = πr^2(r)`$<br>$`V_{max} = πr^3`$|$`h = r`$<br>$`SA = πr^2+2πrh`$<br>$`SA_{min} = πr^2+2πr(r)`$<br>$`SA_{min} = πr^2+2πr^2`$<br>$`SA_{min} = 3πr^2`$|
|
||||
|Square-Based Rectangular Prism(open-top)|$`h = \frac{w}{2}`$<br>$`V = lwh`$<br>$`V_{max} = (w)(w)(\frac{w}{2})`$<br>$`V_{max} = \frac{w^3}{2}`$|$`h = \frac{w}{2}`$<br>$`SA = w^2+4wh`$<br>$`SA_{min} = w^2+4w(\frac{w}{2})`$<br>$`SA_{min} = w^2+2w^2`$<br>$`SA_{min} = 3w^2`$|
|
||||
|
||||
## Labelling
|
||||
- Given any polygons, labelling the vertices must always:
|
||||
@ -420,10 +420,10 @@ x, & \text{if } x > 0\\
|
||||
|
||||
## Slope and Equation of Line
|
||||
- ```Slope```: The measure of the steepness of a line - ```rise / run``` or ```the rate of change```
|
||||
- ```Slope Formula```: **m = (y<sub>2</sub>-y<sub>1</sub>)/(x<sub>2</sub>-x<sub>1</sub>)**
|
||||
- ```Standard Form```: **ax + by + c = 0**, a∈Z, b∈Z, c∈Z (must be integers and ```a``` must be positive)
|
||||
- ```Y-intercept Form```: **y = mx + b**
|
||||
- ```Point-slope Form```: **y<sub>2</sub>-y<sub>1</sub> = m(x<sub>2</sub>-x<sub>1</sub>)**
|
||||
- ```Slope Formula```: $`m = \frac{y_2 - y_1}{x_2 - x_1}`$
|
||||
- ```Standard Form```: $`ax + by + c = 0, a \isin \mathbb{Z}, b \isin \mathbb{Z}, c \isin \mathbb{Z}`$ (must be integers and $`a`$ must be positive)
|
||||
- ```Y-intercept Form```: $`y = mx + b`$
|
||||
- ```Point-slope Form```: $`y_2-y_1 = m(x_2-x_1)`$
|
||||
- The slope of a vertical lines is undefined
|
||||
- The slope of a horizontal line is 0
|
||||
- Parallel lines have the ```same slope```
|
||||
@ -432,25 +432,25 @@ x, & \text{if } x > 0\\
|
||||
## Relations
|
||||
- A relation can be described using
|
||||
1. Table of Values (see below)
|
||||
2. Equations (y = 3x + 5)
|
||||
2. Equations $`(y = 3x + 5)`$
|
||||
3. Graphs (Graphing the equation)
|
||||
4. Words
|
||||
- When digging into the earth, the temperature rises according to the
|
||||
- following linear equation: t = 15 + 0.01 h. **t** is the increase in temperature in
|
||||
- degrees and **h** is the depth in meters.
|
||||
- following linear equation: $`t = 15 + 0.01 h`$. $`t`$ is the increase in temperature in
|
||||
- degrees and $`h`$ is the depth in meters.
|
||||
|
||||
## Perpendicular Lines
|
||||
- To find the perpendicular slope, you will need to find the slope point
|
||||
- Formula: slope1 × slope2 = -1
|
||||
- Notation: m<sub>⊥</sub>
|
||||
- Notation: $`m_\perp`$
|
||||
- <img src="https://www.varsitytutors.com/assets/vt-hotmath-legacy/hotmath_help/topics/parallel-perpendicular-lines/parallel_perpendicular_lines_1.gif" width="300">
|
||||
|
||||
|
||||
## Definitions
|
||||
- ```Parallel```: 2 lines with the same slope
|
||||
- ```Perpendicular```: 2 lines with slopes that are the negative reciprocal to the other. They form a 90 degree angle where they meet.
|
||||
- ```Domain```: The **ordered** set of all possible values of the independent variable (x).
|
||||
- ```Range```: The **ordered** set of all possible values of the dependent variable (y).
|
||||
- ```Domain```: The **ordered** set of all possible values of the independent variable $`x`$.
|
||||
- ```Range```: The **ordered** set of all possible values of the dependent variable $`y`$.
|
||||
- ```Continous Data```: A data set that can be broken into smaller parts. This is represented by a ```Solid line```.
|
||||
- ```Discrete Data```: A data set that **cannot** be broken into smaller parts. This is represented by a ```Dashed line```.
|
||||
- ```First Difference```: the difference between 2 consecutive y values in a table of values which the difference between the x-values are constant.
|
||||
@ -525,18 +525,22 @@ x, & \text{if } x > 0\\
|
||||
- <img src="https://lh5.googleusercontent.com/wqYggWjMVXvWdY9DiCFYGI7XSL4fXdiHsoZFkiXcDcE93JgZHzPkWSoZ6f4thJ-aLgKd0cvKJutG6_gmmStSpkVPJPOyvMF4-JcfS_hVRTdfuypJ0sD50tNf0n1rukcLBNqOv42A" width="500">
|
||||
|
||||
## Discriminant
|
||||
- The discriminant determines the number of solutions (roots) there are in a quadratic equation. ```a```, ```b```, ```c``` are the
|
||||
- coefficients and constant of a quadratic equation: **y = ax<sup>2</sup> + bx + c**
|
||||
- D = b<sup>2</sup> - 4ac
|
||||
- D > 0 ```(2 distinct real solutions)```
|
||||
- D = 0 ```(1 real solution)```
|
||||
- D < 0 ```(no real solutions)```
|
||||
- The discriminant determines the number of solutions (roots) there are in a quadratic equation. $`a, b , c`$ are the
|
||||
- coefficients and constant of a quadratic equation: $`y = ax^2 + bx + c`$
|
||||
$`
|
||||
D = b^2 - 4ac
|
||||
\begin{cases}
|
||||
\text{2 distinct real solutions}, & \text{if } D > 0 \\
|
||||
\text{1 real solution}, & \text{if } D = 0 \\
|
||||
\text{no real solutions}, & \text{if } D < 0
|
||||
\end{cases}
|
||||
`$
|
||||
|
||||
- <img src="https://image.slidesharecdn.com/thediscriminant-160218001000/95/the-discriminant-5-638.jpg?cb=1455754224" width="500">
|
||||
|
||||
## Solving Linear-Quadratic Systems
|
||||
- To find the point of intersection, do the following:
|
||||
1. Isolate both equations for ```y```
|
||||
1. Isolate both equations for $`y`$
|
||||
2. Set the equations equal to each other by ```subsitution``` Equation 1 = Equation 2
|
||||
3. Simplify and put everything on one side and equal to zero on the other side
|
||||
4. Factor
|
||||
@ -547,7 +551,7 @@ x, & \text{if } x > 0\\
|
||||
- <img src = "https://lh5.googleusercontent.com/AJxSjT24kwneM_UH6kehfX-7AnzVewTJIk6v02aXOZ84veou2xNyBMPmhGSXWNhvhJfZT-wwHSlDNvbsfeHzjpGSuXMOohoIvaS2u0saoO1BZTRV3xNVobdoWytLhkVl0CkEaIiQ" width ="500">
|
||||
|
||||
- There are 3 possible cases
|
||||
- In addition, to determine the number of solutions, you the Discriminant formula **D = b<sup>2</sup> - 4ac**
|
||||
- In addition, to determine the number of solutions, you the Discriminant formula $`D = b^2 - 4ac`$
|
||||
|
||||
|
||||
# Ways to solve Systems of Equations
|
||||
@ -559,14 +563,18 @@ x, & \text{if } x > 0\\
|
||||
y = x + 10 (1)
|
||||
x + y + 34 = 40 (2)
|
||||
```
|
||||
We can sub (1) into (2) to find ```x```, then you the value of ```x``` we found to solve for ```y```
|
||||
```x + (x + 10) + 34 = 40```
|
||||
```2x + 44 = 40```
|
||||
```2x = -4```
|
||||
```x = -2```
|
||||
Then solve for ```y```
|
||||
```y = -2 + 10```
|
||||
```y = -8```
|
||||
- We can sub $`(1)`$ into $`(2)`$ to find $`x`$, then you the value of $`x`$ we found to solve for $`y`$
|
||||
```
|
||||
x + (x + 10) + 34 = 40
|
||||
2x + 44 = 40
|
||||
2x = -4
|
||||
x = -2
|
||||
```
|
||||
- Then solve for $`y`$
|
||||
```
|
||||
y = -2 + 10
|
||||
y = -8
|
||||
```
|
||||
|
||||
## 2. Elimination
|
||||
- Here we eliminate a variable by basically eliminate a variable from an equation
|
||||
@ -576,7 +584,7 @@ x, & \text{if } x > 0\\
|
||||
2x + 3y = 10 (1)
|
||||
4x + 3y = 14 (2)
|
||||
```
|
||||
We can then use elimination
|
||||
- We can then use elimination
|
||||
```
|
||||
4x + 3y = 14
|
||||
2x + 3y = 10
|
||||
@ -584,10 +592,12 @@ x, & \text{if } x > 0\\
|
||||
2x + 0 = 4
|
||||
x = 2
|
||||
```
|
||||
Then sub the value of ```x``` into an original equation and solve for ```y```
|
||||
```2(2) + 3y = 10```
|
||||
```3y = 6```
|
||||
```y = 2```
|
||||
- Then sub the value of $`x`$ into an original equation and solve for $`y`$
|
||||
```
|
||||
2(2) + 3y = 10
|
||||
3y = 6
|
||||
y = 2
|
||||
```
|
||||
|
||||
## 3. Graphing
|
||||
- we can rewrite the equations into ```y-intercept form``` and then graph the lines, and see where the lines intersect (P.O.I), and the P.O.I is the solution
|
||||
@ -598,20 +608,20 @@ x, & \text{if } x > 0\\
|
||||
|
||||
- | |Use ```Dash``` line|Use ```Solid line```|
|
||||
|:-|:------------------|:-------------------|
|
||||
|Shade the region ```above``` the line|y > mx + b|y ≥ mx + b|
|
||||
|Shade the region ```below``` the line|y < mx + b| y ≤ mx + b|
|
||||
|Shade the region ```above``` the line|$`y > mx + b`$|$`y \ge mx + b`$|
|
||||
|Shade the region ```below``` the line|$`y < mx + b`$|$`y \le mx + b`$|
|
||||
|
||||
- ## If
|
||||
|
||||
- |x > a <br> x ≥ a|
|
||||
- |$`x > a`$ <br> $`x \ge a`$|
|
||||
|:------------------|
|
||||
- |shade the region on the **right**|
|
||||
|shade the region on the **right**|
|
||||
|
||||
- ## If
|
||||
|
||||
- |x < a <br> x ≤ a|
|
||||
- |:------------------|
|
||||
- |shade the region on the **left**|
|
||||
- |$`x < a`$ <br> $`x \le a`$|
|
||||
|:------------------|
|
||||
|shade the region on the **left**|
|
||||
|
||||
- Step 1. change all inequalities to ```y-intercept form```
|
||||
- Step 2. graph the line
|
||||
|
Loading…
Reference in New Issue
Block a user