1
0
mirror of https://gitlab.com/magicalsoup/Highschool.git synced 2025-01-23 16:11:46 -05:00

Update Final_Exam_Study_Sheet.md

This commit is contained in:
James Su 2019-04-18 23:59:38 +00:00
parent 50e7bd45e8
commit 1c74d2b042

View File

@ -136,9 +136,9 @@
## Scientific Notation ## Scientific Notation
- They convey accuracy and precision. It can either be written as its original number or in scientific notation: - They convey accuracy and precision. It can either be written as its original number or in scientific notation:
- 555 (**Exact**) or 5.55 x 10<sup>2</sup> (**3 significant figures**). - 555 (**Exact**) or $`5.55 \times 10^2`$ (**3 significant figures**).
- In scientific notation, values are written in the form **a(10<sup>n</sup>)**, where ```a``` is a number within 1 and 10 and ```n``` is any integer. - In scientific notation, values are written in the form $`a(10^n)`$, where $`a`$ is a number within 1 and 10 and $`n`$ is any integer.
- Some examples include the following: 5.4 x 10<sup>3</sup>, 3.0 x 10<sup>2</sup>, and 4.56 x 10<sup>-4</sup>. - Some examples include the following: $`5.4 \times 10^3, 3.0 \times 10^2`$, and $`4.56 \times 10^{-4}`$.
- When the number is smaller than 1, a negative exponent is used, when the number is bigger than 10, a positve exponent is used - When the number is smaller than 1, a negative exponent is used, when the number is bigger than 10, a positve exponent is used
- <img src="https://embedwistia-a.akamaihd.net/deliveries/d2de1eb00bafe7ca3a2d00349db23a4117a8f3b8.jpg?image_crop_resized=960x600" width="500"> - <img src="https://embedwistia-a.akamaihd.net/deliveries/d2de1eb00bafe7ca3a2d00349db23a4117a8f3b8.jpg?image_crop_resized=960x600" width="500">
@ -340,20 +340,20 @@ x, & \text{if } x > 0\\
## 2D Geometry Equations ## 2D Geometry Equations
|Shape|Formula|Picture| |Shape|Formula|Picture|
|:----|:------|:------| |:----|:------|:------|
|Rectangle|```Area```: lw <br> ```Perimeter```: 2(l+w)|<img src="https://lh5.googleusercontent.com/Ib1Evz5PUwd4PzRmFkHj9IY2Is-UthHoUyyiEHAzkJP-296jZvMmHJM1Kws4PmuTeYHV2ZBIJenc4W1pKtsSHvU82lyjOed2XKBb1PWnoaeJ3sSPuaJgSTg8JWbxrvplabCanvTD" width="200">| |Rectangle|```Area```: $`lw`$ <br> ```Perimeter```: $`2(l+w)`$|<img src="https://lh5.googleusercontent.com/Ib1Evz5PUwd4PzRmFkHj9IY2Is-UthHoUyyiEHAzkJP-296jZvMmHJM1Kws4PmuTeYHV2ZBIJenc4W1pKtsSHvU82lyjOed2XKBb1PWnoaeJ3sSPuaJgSTg8JWbxrvplabCanvTD" width="200">|
|Triangle|```Area```: bh/2 <br> ```Perimeter```: a+b+c|<img src="https://lh6.googleusercontent.com/covvHwXxQhrK2Hr0YZoivPkHodgstVUpAQcjpg8sIKU25iquSHrRd2EJT64iWLsg_75WnBw4T9P0OTBiZDkpqEkXxflZQrL16sNhcFfet_z4Mw5EPFgdx_4HzsagV0Sm5jN6EKr_" width="200">| |Triangle|```Area```: $`\frac{bh}{2}`$ <br> ```Perimeter```: $`a+b+c`$|<img src="https://lh6.googleusercontent.com/covvHwXxQhrK2Hr0YZoivPkHodgstVUpAQcjpg8sIKU25iquSHrRd2EJT64iWLsg_75WnBw4T9P0OTBiZDkpqEkXxflZQrL16sNhcFfet_z4Mw5EPFgdx_4HzsagV0Sm5jN6EKr_" width="200">|
|Circle|```Area```: πr<sup>2</sup> <br> ```Circumference```: 2πr or πd|<img src="https://lh5.googleusercontent.com/RydffLVrOKuXPDXO0WGPpb93R8Ucm27qaQXuxNy_fdEcLmuGZH4eYc1ILNmLEx8_EYrRuOuxFavtL9DF1lTWYOx9WaYauVlu0o_UR6eZLeGewGjFNUQSK8ie4eTm1BMHfRoQWHob" width="200">| |Circle|```Area```: $`πr^2`$ <br> ```Circumference```: $`2πr`$ or $`πd`$|<img src="https://lh5.googleusercontent.com/RydffLVrOKuXPDXO0WGPpb93R8Ucm27qaQXuxNy_fdEcLmuGZH4eYc1ILNmLEx8_EYrRuOuxFavtL9DF1lTWYOx9WaYauVlu0o_UR6eZLeGewGjFNUQSK8ie4eTm1BMHfRoQWHob" width="200">|
|Trapezoid|```Area```: (a+b)h/2 <br> ```Perimeter```: a+b+c+d|<img src="https://lh6.googleusercontent.com/_nceVtFlScBbup6-sPMulUTV3MMKu1nonei0D1WY-KRkpHSbPCIWgDO8UGDQBGKh8i0dkAqOhFUHl7YHCFOt6AMRSJiXALlBBY0mBo1MMZxHRVcg8DknSlv4ng7_QswcZtaRwrJb" width="200">| |Trapezoid|```Area```: $` \frac{(a+b)h}{2}`$ <br> ```Perimeter```: $`a+b+c+d`$|<img src="https://lh6.googleusercontent.com/_nceVtFlScBbup6-sPMulUTV3MMKu1nonei0D1WY-KRkpHSbPCIWgDO8UGDQBGKh8i0dkAqOhFUHl7YHCFOt6AMRSJiXALlBBY0mBo1MMZxHRVcg8DknSlv4ng7_QswcZtaRwrJb" width="200">|
## 3D Geometry Equations ## 3D Geometry Equations
|3D Object|Formula|Picture| |3D Object|Formula|Picture|
|:----|:------|:------| |:----|:------|:------|
|Rectangular Prism|```Volume```: lwh <br> ```SA```: 2(lw+lh+wh)|<img src="https://lh6.googleusercontent.com/-mqEJ4AMk3xDPfqH5kdVukhtCGl3fgTy2ojyAArla54c7UoAnqKW_bsYSaFySXLplE59pqLIg5ANZAL1f6UEejsrKJwQCfyO7gwUQmSDoJJtQG_WkfHcOFDjidXV4Y4jfU2iA5b-" width="200">| |Rectangular Prism|```Volume```: $`lwh`$ <br> ```SA```: $`2(lw+lh+wh)`$|<img src="https://lh6.googleusercontent.com/-mqEJ4AMk3xDPfqH5kdVukhtCGl3fgTy2ojyAArla54c7UoAnqKW_bsYSaFySXLplE59pqLIg5ANZAL1f6UEejsrKJwQCfyO7gwUQmSDoJJtQG_WkfHcOFDjidXV4Y4jfU2iA5b-" width="200">|
|Square Based Pyramid|```Volume```: <sup>1</sup>&frasl;<sub>3</sub>b<sup>2</sup>h <br> ```SA```: 2bs+b<sup>2</sup>|<img src="https://lh5.googleusercontent.com/iqaaJtx-Kx4vFT3Yp6YLOmpDFL7_qk2uh0Z21pgPJMDRgchiUBcHeTWkMrR9mFjxCj8w7za1xwN9bo4UFACPZRMSl-V67uPv9FvDyNJVjedmeehx5K-iUK9sBhObhNsLJpNItkg0" width="200">| |Square Based Pyramid|```Volume```: $`\frac{1}{3} b^2 h`$ <br> ```SA```: $`2bs+b^2`$|<img src="https://lh5.googleusercontent.com/iqaaJtx-Kx4vFT3Yp6YLOmpDFL7_qk2uh0Z21pgPJMDRgchiUBcHeTWkMrR9mFjxCj8w7za1xwN9bo4UFACPZRMSl-V67uPv9FvDyNJVjedmeehx5K-iUK9sBhObhNsLJpNItkg0" width="200">|
|Sphere|```Volume```: <sup>4</sup>&frasl;<sub>3</sub>πr<sup>3</sup> <br> ```SA```: 4πr<sup>2</sup>|<img src="https://lh6.googleusercontent.com/DL6ViJLbap2dcSAlZnYKR7c33033g8WuJVvqz0KpzCyIJ0wXyrh5ejoLhrTxlX9uASQlxPmihm8doU1sNbaQxqBcTaPnP-lC6LUrPqzPNi11AHiHQAu3ag7uIGcwzkdC9e5uo1en" width="200">| |Sphere|```Volume```: $`\frac{4}{3} πr^3`$ <br> ```SA```: $`4πr^2`$|<img src="https://lh6.googleusercontent.com/DL6ViJLbap2dcSAlZnYKR7c33033g8WuJVvqz0KpzCyIJ0wXyrh5ejoLhrTxlX9uASQlxPmihm8doU1sNbaQxqBcTaPnP-lC6LUrPqzPNi11AHiHQAu3ag7uIGcwzkdC9e5uo1en" width="200">|
|Cone|```Volume```: <sup>1</sup>&frasl;<sub>3</sub>πr<sup>2</sup>h <br> ```SA```: πrs+πr<sup>2</sup>|<img src="https://lh5.googleusercontent.com/V3iZzX8ARcipdJiPPFYso_il3v_tcrYHZlFnq3qkekRSVBVcj8OzWxMuBqN45aHbv6y-fDH4uY11Gus3KMrvf_Z_TvsfJCwZZ19Ezf7Yj6DzVirp-Gx3V0Qy793ooUwTDmdKW_xq" width="200">| |Cone|```Volume```: $` \frac{1}{3} πr^2 h`$ <br> ```SA```: $`πrs+πr^2`$|<img src="https://lh5.googleusercontent.com/V3iZzX8ARcipdJiPPFYso_il3v_tcrYHZlFnq3qkekRSVBVcj8OzWxMuBqN45aHbv6y-fDH4uY11Gus3KMrvf_Z_TvsfJCwZZ19Ezf7Yj6DzVirp-Gx3V0Qy793ooUwTDmdKW_xq" width="200">|
|Cylinder|```Volume```: πr<sup>2</sup>h <br> ```SA```: 2πr<sup>2</sup>+2πh|<img src="https://lh5.googleusercontent.com/4uWukD3oNUYBG-fLX2-g58X8at0h74al7BJI5l78LZ0Bu9nXuZnt9dp9xiETeLTqykP-WWFdO_H5by4RkgDVxSENZgootSrAsOUoY2RWubflNOAau1bVFgm9YIe59SmiFlyxwgDV" width="200">| |Cylinder|```Volume```: $`πr^2h`$ <br> ```SA```: $`2πr^2+2πh`$|<img src="https://lh5.googleusercontent.com/4uWukD3oNUYBG-fLX2-g58X8at0h74al7BJI5l78LZ0Bu9nXuZnt9dp9xiETeLTqykP-WWFdO_H5by4RkgDVxSENZgootSrAsOUoY2RWubflNOAau1bVFgm9YIe59SmiFlyxwgDV" width="200">|
|Triangular Prism|```Volume```: ah+bh+ch+bl <br> ```SA```: <sup>1</sup>&frasl;<sub>2</sub>blh|<img src="https://lh3.googleusercontent.com/_oRUVgfdksfUXGKQk3AtrtY70E8jEq-RRK-lB9yKc_Rtio2f2utGAY-rI4UqjWEeTzUoN_r7EiqdZZeeE12EY-fiV55QQKdvnv4y4VaxQ9xt9Izugp6Ox_LqIUpQzPKVldptgKWm" width="200">| |Triangular Prism|```Volume```: $`ah+bh+ch+bl`$ <br> ```SA```: $` \frac{1}{2} blh`$|<img src="https://lh3.googleusercontent.com/_oRUVgfdksfUXGKQk3AtrtY70E8jEq-RRK-lB9yKc_Rtio2f2utGAY-rI4UqjWEeTzUoN_r7EiqdZZeeE12EY-fiV55QQKdvnv4y4VaxQ9xt9Izugp6Ox_LqIUpQzPKVldptgKWm" width="200">|
## Optimization (For Maximimizing Area/Volume, or Minimizing Perimeter/Surface Area) ## Optimization (For Maximimizing Area/Volume, or Minimizing Perimeter/Surface Area)
@ -362,18 +362,18 @@ x, & \text{if } x > 0\\
|Shape|Maximum Area|Minimum Perimeter| |Shape|Maximum Area|Minimum Perimeter|
|:----|:-----------|:----------------| |:----|:-----------|:----------------|
|4-sided rectangle|A rectangle must be a square to maximaze the area for a given perimeter. The length is equal to the width<br>A = lw<br>A<sub>max</sub> = (w)(w)<br>A<sub>max</sub> = w<sup>2</sup>|A rectangle must be a square to minimaze the perimeter for a given area. The length is equal to the width.<br>P = 2(l+w)<br>P<sub>min</sub> = 2(w)(w)<br>P<sub>min</sub> = 2(2w)<br>P<sub>min</sub> = 4w| |4-sided rectangle|A rectangle must be a square to maximaze the area for a given perimeter. The length is equal to the width<br>$`A = lw`$<br>$`A_{max} = (w)(w)`$<br>$`A_{max} = w^2`$|A rectangle must be a square to minimaze the perimeter for a given area. The length is equal to the width.<br>$`P = 2(l+w)`$<br>$`P_{min} = 2(w)(w)`$<br>$`P_{min} = 2(2w)`$<br>$`P_{min} = 4w`$|
|3-sided rectangle|l = 2w<br>A = lw<br>A<sub>max</sub> = 2w(w)<br>A<sub>max</sub> = 2w<sup>2</sup>|l = 2w<br>P = l+w2<br>P<sub>min</sub> = 2w+2w<br>P<sub>min</sub> = 4w| |3-sided rectangle|$`l = 2w`$<br>$`A = lw`$<br>$`A_{max} = 2w(w)`$<br>$`A_{max} = 2w^2`$|$`l = 2w`$<br>$`P = l+2w`$<br>$`P_{min} = 2w+2w`$<br>$`P_{min} = 4w`$|
### 3D Objects ### 3D Objects
|3D Object|Maximum Volumne|Minimum Surface Area| |3D Object|Maximum Volumne|Minimum Surface Area|
|:--------|:--------------|:-------------------| |:--------|:--------------|:-------------------|
|Cylinder(closed-top)|The cylinder must be similar to a cube where h = 2r<br>V = πr<sup>2</sup>h<br>V<sub>max</sub> = πr<sup>2</sup>(2r)<br>V<sub>max</sub> = 2πr<sup>3</sup>|The cylinder must be similar to a cube where h = 2r<br>SA = 2πr<sup>2</sup>+2πrh<br>SA<sub>min</sub> = 2πr<sup>2</sup>+2πr(2r)<br>SA<sub>min</sub> = 2πr<sup>2</sup>+4πr<sup>2</sup><br>SA<sub>min</sub> = 6πr<sup>2</sup>| |Cylinder(closed-top)|The cylinder must be similar to a cube where $`h = 2r`$<br>$`V = πr^2h`$<br>$`V_{max} = πr^2(2r)`$<br>$`V_{max} = 2πr^3`$|The cylinder must be similar to a cube where $`h = 2r`$<br>$`SA = 2πr^2+2πrh`$<br>$`SA_{min} = 2πr^2+2πr(2r)`$<br>$`SA_{min} = 2πr^2+4πr^2`$<br>$`SA_{min} = 6πr^2`$|
|Rectangular Prism(closed-top)|The prism must be a cube, <br> where l = w = h<br>V = lwh<br>V<sub>max</sub> = (w)(w)(w)<br>V<sub>max</sub> = w<sup>3</sup>|The prism must be a cube, <br>where l = w = h<br>SA = 2lh+2lw+2wh<br>SA<sub>min</sub> = 2w<sup>2</sup>+2w<sup>2</sup>+2w<sup>2</sup><br>SA<sub>min</sub> = 6w<sup>2</sup>| |Rectangular Prism(closed-top)|The prism must be a cube, <br> where $`l = w = h`$<br>$`V = lwh`$<br>$`V_{max} = (w)(w)(w)`$<br>$`V_{max} = w^3`$|The prism must be a cube, <br>where $`l = w = h`$<br>$`SA = 2lh+2lw+2wh`$<br>$`SA_{min} = 2w^2+2w^2+2w^2`$<br>$`SA_{min} = 6w^2`$|
|Cylinder(open-top)|h = r<br>V = πr<sup>2</sup>h<br>V<sub>max</sub> = πr<sup>2</sup>(r)<br>V<sub>max</sub> = πr<sup>3</sup>|h = r<br>SA = πr<sup>2</sup>+2πrh<br>SA<sub>min</sub> = πr<sup>2</sup>+2πr(r)<br>SA<sub>min</sub> = πr<sup>2</sup>+2πr<sup>2</sup><br>SA<sub>min</sub> = 3πr<sup>2</sup>| |Cylinder(open-top)|$`h = r`$<br>$`V = πr^2h`$<br>$`V_{max} = πr^2(r)`$<br>$`V_{max} = πr^3`$|$`h = r`$<br>$`SA = πr^2+2πrh`$<br>$`SA_{min} = πr^2+2πr(r)`$<br>$`SA_{min} = πr^2+2πr^2`$<br>$`SA_{min} = 3πr^2`$|
|Square-Based Rectangular Prism(open-top)|h = w/2<br>V = lwh<br>V<sub>max</sub> = (w)(w)(<sup>w</sup>&frasl;<sub>2</sub>)<br>V<sub>max</sub> = <sup>w<sup>3</sup></sup>&frasl;<sub>2</sub>|h = w/2<br>SA = w<sup>2</sup>+4wh<br>SA<sub>min</sub> = w<sup>2</sup>+4w(<sup>w</sup>&frasl;<sub>2</sub>)<br>SA<sub>min</sub> = w<sup>2</sup>+2w<sup>2</sup><br>SA<sub>min</sub> = 3w<sup>2</sup>| |Square-Based Rectangular Prism(open-top)|$`h = \frac{w}{2}`$<br>$`V = lwh`$<br>$`V_{max} = (w)(w)(\frac{w}{2})`$<br>$`V_{max} = \frac{w^3}{2}`$|$`h = \frac{w}{2}`$<br>$`SA = w^2+4wh`$<br>$`SA_{min} = w^2+4w(\frac{w}{2})`$<br>$`SA_{min} = w^2+2w^2`$<br>$`SA_{min} = 3w^2`$|
## Labelling ## Labelling
- Given any polygons, labelling the vertices must always: - Given any polygons, labelling the vertices must always:
@ -420,10 +420,10 @@ x, & \text{if } x > 0\\
## Slope and Equation of Line ## Slope and Equation of Line
- ```Slope```: The measure of the steepness of a line - ```rise / run``` or ```the rate of change``` - ```Slope```: The measure of the steepness of a line - ```rise / run``` or ```the rate of change```
- ```Slope Formula```: **m = (y<sub>2</sub>-y<sub>1</sub>)/(x<sub>2</sub>-x<sub>1</sub>)** - ```Slope Formula```: $`m = \frac{y_2 - y_1}{x_2 - x_1}`$
- ```Standard Form```: **ax + by + c = 0**, a&isin;Z, b&isin;Z, c&isin;Z (must be integers and ```a``` must be positive) - ```Standard Form```: $`ax + by + c = 0, a \isin \mathbb{Z}, b \isin \mathbb{Z}, c \isin \mathbb{Z}`$ (must be integers and $`a`$ must be positive)
- ```Y-intercept Form```: **y = mx + b** - ```Y-intercept Form```: $`y = mx + b`$
- ```Point-slope Form```: **y<sub>2</sub>-y<sub>1</sub> = m(x<sub>2</sub>-x<sub>1</sub>)** - ```Point-slope Form```: $`y_2-y_1 = m(x_2-x_1)`$
- The slope of a vertical lines is undefined - The slope of a vertical lines is undefined
- The slope of a horizontal line is 0 - The slope of a horizontal line is 0
- Parallel lines have the ```same slope``` - Parallel lines have the ```same slope```
@ -432,25 +432,25 @@ x, & \text{if } x > 0\\
## Relations ## Relations
- A relation can be described using - A relation can be described using
1. Table of Values (see below) 1. Table of Values (see below)
2. Equations (y = 3x + 5) 2. Equations $`(y = 3x + 5)`$
3. Graphs (Graphing the equation) 3. Graphs (Graphing the equation)
4. Words 4. Words
- When digging into the earth, the temperature rises according to the - When digging into the earth, the temperature rises according to the
- following linear equation: t = 15 + 0.01 h. **t** is the increase in temperature in - following linear equation: $`t = 15 + 0.01 h`$. $`t`$ is the increase in temperature in
- degrees and **h** is the depth in meters. - degrees and $`h`$ is the depth in meters.
## Perpendicular Lines ## Perpendicular Lines
- To find the perpendicular slope, you will need to find the slope point - To find the perpendicular slope, you will need to find the slope point
- Formula: slope1 &times; slope2 = -1 - Formula: slope1 &times; slope2 = -1
- Notation: m<sub>&perp;</sub> - Notation: $`m_\perp`$
- <img src="https://www.varsitytutors.com/assets/vt-hotmath-legacy/hotmath_help/topics/parallel-perpendicular-lines/parallel_perpendicular_lines_1.gif" width="300"> - <img src="https://www.varsitytutors.com/assets/vt-hotmath-legacy/hotmath_help/topics/parallel-perpendicular-lines/parallel_perpendicular_lines_1.gif" width="300">
## Definitions ## Definitions
- ```Parallel```: 2 lines with the same slope - ```Parallel```: 2 lines with the same slope
- ```Perpendicular```: 2 lines with slopes that are the negative reciprocal to the other. They form a 90 degree angle where they meet. - ```Perpendicular```: 2 lines with slopes that are the negative reciprocal to the other. They form a 90 degree angle where they meet.
- ```Domain```: The **ordered** set of all possible values of the independent variable (x). - ```Domain```: The **ordered** set of all possible values of the independent variable $`x`$.
- ```Range```: The **ordered** set of all possible values of the dependent variable (y). - ```Range```: The **ordered** set of all possible values of the dependent variable $`y`$.
- ```Continous Data```: A data set that can be broken into smaller parts. This is represented by a ```Solid line```. - ```Continous Data```: A data set that can be broken into smaller parts. This is represented by a ```Solid line```.
- ```Discrete Data```: A data set that **cannot** be broken into smaller parts. This is represented by a ```Dashed line```. - ```Discrete Data```: A data set that **cannot** be broken into smaller parts. This is represented by a ```Dashed line```.
- ```First Difference```: the difference between 2 consecutive y values in a table of values which the difference between the x-values are constant. - ```First Difference```: the difference between 2 consecutive y values in a table of values which the difference between the x-values are constant.
@ -525,18 +525,22 @@ x, & \text{if } x > 0\\
- <img src="https://lh5.googleusercontent.com/wqYggWjMVXvWdY9DiCFYGI7XSL4fXdiHsoZFkiXcDcE93JgZHzPkWSoZ6f4thJ-aLgKd0cvKJutG6_gmmStSpkVPJPOyvMF4-JcfS_hVRTdfuypJ0sD50tNf0n1rukcLBNqOv42A" width="500"> - <img src="https://lh5.googleusercontent.com/wqYggWjMVXvWdY9DiCFYGI7XSL4fXdiHsoZFkiXcDcE93JgZHzPkWSoZ6f4thJ-aLgKd0cvKJutG6_gmmStSpkVPJPOyvMF4-JcfS_hVRTdfuypJ0sD50tNf0n1rukcLBNqOv42A" width="500">
## Discriminant ## Discriminant
- The discriminant determines the number of solutions (roots) there are in a quadratic equation. ```a```, ```b```, ```c``` are the - The discriminant determines the number of solutions (roots) there are in a quadratic equation. $`a, b , c`$ are the
- coefficients and constant of a quadratic equation: **y = ax<sup>2</sup> + bx + c** - coefficients and constant of a quadratic equation: $`y = ax^2 + bx + c`$
- D = b<sup>2</sup> - 4ac $`
- D > 0 ```(2 distinct real solutions)``` D = b^2 - 4ac
- D = 0 ```(1 real solution)``` \begin{cases}
- D < 0 ```(no real solutions)``` \text{2 distinct real solutions}, & \text{if } D > 0 \\
\text{1 real solution}, & \text{if } D = 0 \\
\text{no real solutions}, & \text{if } D < 0
\end{cases}
`$
- <img src="https://image.slidesharecdn.com/thediscriminant-160218001000/95/the-discriminant-5-638.jpg?cb=1455754224" width="500"> - <img src="https://image.slidesharecdn.com/thediscriminant-160218001000/95/the-discriminant-5-638.jpg?cb=1455754224" width="500">
## Solving Linear-Quadratic Systems ## Solving Linear-Quadratic Systems
- To find the point of intersection, do the following: - To find the point of intersection, do the following:
1. Isolate both equations for ```y``` 1. Isolate both equations for $`y`$
2. Set the equations equal to each other by ```subsitution``` Equation 1 = Equation 2 2. Set the equations equal to each other by ```subsitution``` Equation 1 = Equation 2
3. Simplify and put everything on one side and equal to zero on the other side 3. Simplify and put everything on one side and equal to zero on the other side
4. Factor 4. Factor
@ -547,7 +551,7 @@ x, & \text{if } x > 0\\
- <img src = "https://lh5.googleusercontent.com/AJxSjT24kwneM_UH6kehfX-7AnzVewTJIk6v02aXOZ84veou2xNyBMPmhGSXWNhvhJfZT-wwHSlDNvbsfeHzjpGSuXMOohoIvaS2u0saoO1BZTRV3xNVobdoWytLhkVl0CkEaIiQ" width ="500"> - <img src = "https://lh5.googleusercontent.com/AJxSjT24kwneM_UH6kehfX-7AnzVewTJIk6v02aXOZ84veou2xNyBMPmhGSXWNhvhJfZT-wwHSlDNvbsfeHzjpGSuXMOohoIvaS2u0saoO1BZTRV3xNVobdoWytLhkVl0CkEaIiQ" width ="500">
- There are 3 possible cases - There are 3 possible cases
- In addition, to determine the number of solutions, you the Discriminant formula **D = b<sup>2</sup> - 4ac** - In addition, to determine the number of solutions, you the Discriminant formula $`D = b^2 - 4ac`$
# Ways to solve Systems of Equations # Ways to solve Systems of Equations
@ -559,14 +563,18 @@ x, & \text{if } x > 0\\
y = x + 10 (1) y = x + 10 (1)
x + y + 34 = 40 (2) x + y + 34 = 40 (2)
``` ```
We can sub (1) into (2) to find ```x```, then you the value of ```x``` we found to solve for ```y``` - We can sub $`(1)`$ into $`(2)`$ to find $`x`$, then you the value of $`x`$ we found to solve for $`y`$
```x + (x + 10) + 34 = 40``` ```
```2x + 44 = 40``` x + (x + 10) + 34 = 40
```2x = -4``` 2x + 44 = 40
```x = -2``` 2x = -4
Then solve for ```y``` x = -2
```y = -2 + 10``` ```
```y = -8``` - Then solve for $`y`$
```
y = -2 + 10
y = -8
```
## 2. Elimination ## 2. Elimination
- Here we eliminate a variable by basically eliminate a variable from an equation - Here we eliminate a variable by basically eliminate a variable from an equation
@ -576,7 +584,7 @@ x, & \text{if } x > 0\\
2x + 3y = 10 (1) 2x + 3y = 10 (1)
4x + 3y = 14 (2) 4x + 3y = 14 (2)
``` ```
We can then use elimination - We can then use elimination
``` ```
4x + 3y = 14 4x + 3y = 14
2x + 3y = 10 2x + 3y = 10
@ -584,10 +592,12 @@ x, & \text{if } x > 0\\
2x + 0 = 4 2x + 0 = 4
x = 2 x = 2
``` ```
Then sub the value of ```x``` into an original equation and solve for ```y``` - Then sub the value of $`x`$ into an original equation and solve for $`y`$
```2(2) + 3y = 10``` ```
```3y = 6``` 2(2) + 3y = 10
```y = 2``` 3y = 6
y = 2
```
## 3. Graphing ## 3. Graphing
- we can rewrite the equations into ```y-intercept form``` and then graph the lines, and see where the lines intersect (P.O.I), and the P.O.I is the solution - we can rewrite the equations into ```y-intercept form``` and then graph the lines, and see where the lines intersect (P.O.I), and the P.O.I is the solution
@ -598,20 +608,20 @@ x, & \text{if } x > 0\\
- | |Use ```Dash``` line|Use ```Solid line```| - | |Use ```Dash``` line|Use ```Solid line```|
|:-|:------------------|:-------------------| |:-|:------------------|:-------------------|
|Shade the region ```above``` the line|y > mx + b|y &ge; mx + b| |Shade the region ```above``` the line|$`y > mx + b`$|$`y \ge mx + b`$|
|Shade the region ```below``` the line|y < mx + b| y &le; mx + b| |Shade the region ```below``` the line|$`y < mx + b`$|$`y \le mx + b`$|
- ## If - ## If
- |x > a <br> x &ge; a| - |$`x > a`$ <br> $`x \ge a`$|
|:------------------| |:------------------|
- |shade the region on the **right**| |shade the region on the **right**|
- ## If - ## If
- |x < a <br> x &le; a| - |$`x < a`$ <br> $`x \le a`$|
- |:------------------| |:------------------|
- |shade the region on the **left**| |shade the region on the **left**|
- Step 1. change all inequalities to ```y-intercept form``` - Step 1. change all inequalities to ```y-intercept form```
- Step 2. graph the line - Step 2. graph the line