From 29554e6656412f9d1f9e1c0911250d5ab6747d14 Mon Sep 17 00:00:00 2001 From: James Su Date: Thu, 2 Jan 2020 19:01:07 +0000 Subject: [PATCH] Update Unit 2: Quadratic Equations.md --- .../Unit 2: Quadratic Equations.md | 35 +++++++++---------- 1 file changed, 16 insertions(+), 19 deletions(-) diff --git a/Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Unit 2: Quadratic Equations.md b/Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Unit 2: Quadratic Equations.md index 42cc9f9..e25b6c6 100644 --- a/Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Unit 2: Quadratic Equations.md +++ b/Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Unit 2: Quadratic Equations.md @@ -9,13 +9,13 @@ $`D = b^2 - 4ac`$ If $`D=0`$, there is one zero. -$`\therefore n^2 - 4(1)(4) = 0`$ +$`\therefore n^2 - 4(1)(9) = 0`$ -$`n^2 - 16 = 0`$ +$`n^2 - 36 = 0`$ -$`(n+4)(n-4) = 0`$ +$`(n+6)(n-6) = 0`$ -$`n = \pm 4`$ +$`n = \pm 6`$ ### Question 1 c) @@ -23,15 +23,15 @@ Let $`h`$ be the height and $`b`$ be the base. $`h = 2b + 4`$. $`\therefore (2b+4)(b) = 168(2)`$ -$`4b^2 + 8b = 168(2)`$ +$`2b^2 + 8b = 168(2)`$ -$`b^2 + 2b = 84 = 0`$ +$`b^2 + 4b - 168 = 0`$ -$`b = \dfrac{-2 \pm \sqrt{4+4(84)}}{4}`$ +$`b = \dfrac{-4 \pm \sqrt{16+4(168)}}{2}`$ -$`b = \dfrac{-2 \pm \sqrt{340}}{2}`$ +$`b = \dfrac{-4 \pm 4\sqrt{43}}{2}`$ -$`b = -1 + \sqrt{85}`$ +$`b = -2 + 2\sqrt{85}`$ ### Question 2 a) @@ -154,22 +154,19 @@ $`x = \dfrac{6 \pm \sqrt{92}}{14} = \dfrac{3 \pm \sqrt{23}}{7}`$ ### Question 4 b). -$`\because \dfrac{1}{3}`$ and $`\dfrac{-2}{3}`$ are the roots of a quadratic equation, that must mean that $`(x-\dfrac{1}{3})(x-\dfrac{2}{3})`$ is a quadratic equation that -gives those roots. +$`\because \dfrac{1}{3}`$ and $`\dfrac{-2}{3}`$ are the roots of a quadratic equation, that must mean that $`(x-\dfrac{1}{3})(x+\dfrac{2}{3})`$ is a quadratic equation that +gives those roots. Here we make $`a=1`$, so its easy to find a quadratic in vertex from that gives these roots. -After expanding we get: +Let the vertex form then be $`y=(x-d)^2+c`$, since $`a=1`$. -$`y = x^2 - \dfrac{2}{3}x - \dfrac{1}{3}x + \dfrac{2}{3}`$ +We know $`d=\dfrac{r_1+r_2}{2}`$ because it is the x-coordinate of the vertex which is also the AOS. Therefore it is equal to $`\dfrac{\dfrac{1}{3} + \dfrac{-2}{3}}{2} = \dfrac{-1}{6}`$ -$`y = x^2 - x + \dfrac{2}{3}`$ +Then, we know $`c=(d-\dfrac{1}{3})(d+\dfrac{2}{3})`$, since by plugging in the x-coordinate of the vertex, we get the y-coordinate of the vertex which is also the $`c`$ value. -Now we complete the square. +Therefore $`c=(\dfrac{-1}{6}-\dfrac{1}{3})(\dfrac{-1}{6} + \dfrac{2}{3}) = \dfrac{-1}{4}`$. -$`y = x^2 - x + (\dfrac{1}{2})^2 - (\dfrac{1}{2})^2 + \dfrac{2}{3}`$ +Therefore our equation is simply $`y = (x+\dfrac{1}{6})^2 - \dfrac{1}{4}`$ -$`y = (x-\dfrac{1}{2})^2 - \dfrac{1}{4} + \dfrac{2}{3}`$ - -$`y = (x-\dfrac{1}{2})^2 + \dfrac{5}{12}`$ ### Qustion 4 c)