From 4bade7b132b3a610dfc5d27e393a5f1ccc5a5d98 Mon Sep 17 00:00:00 2001 From: James Su Date: Wed, 4 Sep 2019 23:51:15 +0000 Subject: [PATCH] Update Unit 1: Essential Skills.md --- .../Math/MPM1DZ/Unit 1: Essential Skills.md | 52 +++++++++---------- 1 file changed, 26 insertions(+), 26 deletions(-) diff --git a/Grade 9/Math/MPM1DZ/Unit 1: Essential Skills.md b/Grade 9/Math/MPM1DZ/Unit 1: Essential Skills.md index deb171e..780d405 100644 --- a/Grade 9/Math/MPM1DZ/Unit 1: Essential Skills.md +++ b/Grade 9/Math/MPM1DZ/Unit 1: Essential Skills.md @@ -5,21 +5,21 @@ ### Addition / Subtraction | Expression | Equivalent| |:----------:|:---------:| - | a + b | a + b | - | (-a) + b | b - a | - | a + (-b) | a - b | - | (-a) + (-b) | -(a + b) | - | a - b | a - b| - | a - (-b) | a + b | - | (-a) -(-b) | (-a) + b| + | $`a + b`$ | $`a + b`$ | + | $`(-a) + b`$ | $`b - a`$ | + | $`a + (-b)`$ | $`a - b`$ | + | $`(-a) + (-b)`$ | $`-(a + b)`$ | + | $`a - b`$ | $`a - b`$| + | $`a - (-b)`$ | $`a + b`$ | + | $`(-a) -(-b)`$ | $`(-a) + b`$| ### Multiplication / Division | Signs | Outcome | |:-----:|:-------:| - | a * b | Positive | - | (-a) * b | Negative | - | a * (-b) | Negative | - | (-a) * (-b) | Positive | + | $`a \times b`$ | Positive | + | $`(-a) \times b`$ | Negative | + | $`a \times (-b)`$ | Negative | + | $`(-a) \times (-b)`$ | Positive | ### BEDMAS / PEMDAS - Follow ```BEDMAS``` for order of operations if there are more than one operation @@ -37,7 +37,7 @@ ## Interval Notation - A notation that represents an interval as a pair of numbers. -- The numbers in the interval represent the endpoint. E.g. **[x > 3, x ∈ R]** +- The numbers in the interval represent the endpoint. E.g. $`[x > 3, x \isin R]`$ - ```|``` means ```such that``` - ```E``` or ∈ means ```element of``` - ```N``` represents **Natural Numbers** $`N = \{x | x \gt 0, x \isin \mathbb{Z} \}`$ @@ -47,10 +47,10 @@ | Symbol | Meaning | |:------:|:-------:| - | (a, b) | Between but not including ```a``` or ```b```, you also use this for ```∞``` | - | [a, b] | Inclusive | - | a ∪ b | Union (or) | - | a ∩ b | Intersection (and) | + | $`(a, b)`$ | Between but not including $`a`$ or $`b`$, you also use this for $`\infty`$| + | $`[a, b]`$ | Inclusive | + | $`a ∪ b`$ | Union (or) | + | $`a ∩ b`$ | Intersection (and) | ## Pythgorean Theorem - a and b are the two legs of the triangle or two sides that form a 90 degree angle of the triangle, c is the hypotenuse @@ -71,32 +71,32 @@ ### Example Simplify Fully: -- $` \frac{3}{4} \div \frac{2}{14} `$ Reduce to lowest terms +- $` \dfrac{3}{4} \div \dfrac{2}{14} `$ Reduce to lowest terms -- $` \frac{3}{4} \div \frac{1}{7} `$ Multiple by reciprocal +- $` \dfrac{3}{4} \div \dfrac{1}{7} `$ Multiple by reciprocal -- $` \frac{3}{4} \times 7 `$ +- $` \dfrac{3}{4} \times 7 `$ -- $` = \frac{21}{4}`$ Leave as improper fraction +- $` = \dfrac{21}{4}`$ Leave as improper fraction ### Shortcut for multiplying fractions - cross divide to keep your numbers small - Example: -- $` \frac{3}{4} \times \frac{2}{12} `$ +- $` \dfrac{3}{4} \times \dfrac{2}{12} `$ -- $` \frac{1}{2} \times \frac{1}{4} `$ +- $` \dfrac{1}{2} \times \dfrac{1}{4} `$ -- $` = \frac{1}{8} `$ +- $` = \dfrac{1}{8} `$ ## Exponent Laws | Rule | Description| Example | |:----:|:----------:|:-------:| - |Product|am × an = an+m|23 × 22 = 25| - |Quotient|am ÷ an = an-m|34 ÷ 32 = 32| - |Power of a Power|(am)n = amn|(23)2 = 26| + |Product|$`a^m \times a^n = a^{n+m}`$|$`2^3 \times 2^2 = 2^5`$| + |Quotient|$`a^m \divide a^n = a^{n-m}`$|$`3^4 \divide 3^2 = 3^2`$| + |Power of a Power|$`(a^m)^n = a^mn`$|$`(2^3)^2 = 2^6`$| |Power of a Quotient| = | = | |Zero as Exponents|a0 = 1|210 = 1| |Negative Exponents|a-m = |1-10 = |