diff --git a/Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Unit 1: Analytical Geometry.md b/Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Unit 1: Analytical Geometry.md index 02a0c27..0c45a25 100644 --- a/Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Unit 1: Analytical Geometry.md +++ b/Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Unit 1: Analytical Geometry.md @@ -77,7 +77,7 @@ midpoint = $` (\dfrac{\sqrt{72} + \sqrt{32}}{2}, \dfrac{-\sqrt{12} - \sqrt{48}}{ $` = ( \dfrac{6\sqrt{2} + 4\sqrt{2}}{2}, \dfrac{-2\sqrt{3}, -4\sqrt{3}}{2}) `$ -$` = 3\sqrt{2} + 2\sqrt{2}, -\sqrt{3 - 2\sqrt{3}`$ +$` = 3\sqrt{2} + 2\sqrt{2}, -\sqrt{3} - 2\sqrt{3}`$ $` = (5\sqrt{2}, -3\sqrt{3})`$ @@ -197,7 +197,7 @@ Let $`(x, y)`$ be the center of the circle, and $`r`$ be the radius of the circl Sub $`(1)`$ into $`(2)`$ -$`x^2 + 8x + 16 + y^2 - 16y + 64 = x^2 - 10x + 25 + y^2 -2y + 1`$ +$`x^2 - 8x + 16 + y^2 - 16y + 64 = x^2 - 10x + 25 + y^2 -2y + 1`$ $`-8x -16y + 80 = -10x - 2y + 26`$