From 7f92d2020645bca494b3c537271bfbbceda2ad4c Mon Sep 17 00:00:00 2001 From: James Su Date: Sun, 29 Dec 2019 18:40:01 +0000 Subject: [PATCH] Update Analytical Geometry.md --- .../Analytical Geometry.md | 175 +++++++++++++++++- 1 file changed, 174 insertions(+), 1 deletion(-) diff --git a/Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Analytical Geometry.md b/Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Analytical Geometry.md index b210c3e..02a0c27 100644 --- a/Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Analytical Geometry.md +++ b/Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Analytical Geometry.md @@ -73,4 +73,177 @@ $`\therefore`$ The `orthocenter` is at $`(\dfrac{5}{4}, 2)`$ ### Question 2 a) -midpoint = $`\large (\dfrac{\sqrt{72} + \sqrt{32}}{2}, \dfrac{-\sqrt{12} - \sqrt{48}}{2} \large )`$ +midpoint = $` (\dfrac{\sqrt{72} + \sqrt{32}}{2}, \dfrac{-\sqrt{12} - \sqrt{48}}{2} )`$ + +$` = ( \dfrac{6\sqrt{2} + 4\sqrt{2}}{2}, \dfrac{-2\sqrt{3}, -4\sqrt{3}}{2}) `$ + +$` = 3\sqrt{2} + 2\sqrt{2}, -\sqrt{3 - 2\sqrt{3}`$ + +$` = (5\sqrt{2}, -3\sqrt{3})`$ + +$`\therefore`$ The midpoint is at $`(5 \sqrt{2}, -3\sqrt{3})`$ + +### Question 2 b) + +Center of mass = centroid. + +Centroid = where all median lines of a trinagle intersect. + +$`M_{AB} = (\dfrac{8+12}{2}, \dfrac{12+4}{2}) = (10, 8)`$ + +$`m_{M_{AB} C} = \dfrac{8-8}{10-2} = 0`$ + +$`y_{M_{AB} C} = 8 \quad (1)`$ + +$`M_{BC} = (\dfrac{12+2}{2}, {8+4}{2}) = (7, 6)`$ + +$`m_{M_{BC} A} = \dfrac{6-12}{7-8} = 6`$ + +$`y_{M_{BC}A} - 12 = 6(x-8)`$ + +$`y_{M_{BC}A} = 6x - 48 +12`$ + +$`y_{M_{BC}A} = 6x - 36 \quad (2)`$ + +```math +\begin{cases} + +y_{M_{BC} A} = 8 & \text{(1)} \\ + +y_{M_{BC} A} = 6x - 36 & \text{(2)} \\ + +\end{cases} +``` + +Sub $`(1)`$ into $`(2)`$ + +$`8 = 6x - 36`$ + +$`6x = 44`$ + +$`x = \dfrac{44}{6} = \dfrac{22}{3} \quad (3)`$ + +By $`(1)`$, $`y=8`$. + +$`\therefore`$ The centroid is at $`(\dfrac{22}{3}, 8)`$ + +### Question 3 + +Shortest distance = straight perpendicular line that connets $`A`$ to a point on line $`\overline{GH}`$ + +$`M_{GH} = \dfrac{42+30}{38 + 16} = \dfrac{72}{54} = \dfrac{4}{3}`$ + +$`M_{\perp GH} = \dfrac{-3}{4}`$ + +$`y_{\perp GH} - 32 = \dfrac{-3}{4}(x+16)`$ + +$`y_{\perp GH} = \dfrac{-3}{4}x + 20 \quad (1)`$ + +$`y_{GH} + 30 = \dfrac{4}{3}(x+16)`$ + +$`y_{GH} = \dfrac{4}{3}x - \dfrac{26}{3} \quad (2)`$ + +```math +\begin{cases} + +y_{\perp GH} = \dfrac{-3}{4}x + 20 & \text{(1)} \\ + +\\ + +y_{GH} = \dfrac{4}{3}x - \dfrac{26}{3} & \text{(2}) \\ +\end{cases} +``` + +Sub $`(1)`$ into $`(2)`$ + +$`\dfrac{-3}{4}x + 20 = \dfrac{4}{3}x - \dfrac{26}{3}`$ + +$`-9x + (12)20 = 16x - 4(26)`$ + +$`25x = 344`$ + +$`x = \dfrac{344}{25} \quad (3)`$ + +Sub $`(3)`$ into $`(1)`$ + +$`y = \dfrac{-3}{4}(\dfrac{344}{25}) + 20`$ + +$`y = \dfrac{-258}{25} + 20`$ + +$`y = \dfrac{-257}{25} + \dfrac{500}{25}`$ + +$`y = {242}{25}`$ + +Distance $`= \sqrt{(-16-\dfrac{344}{25})^2 + (32 - \dfrac{242}{25})^2} = 37.2`$ + +$`\therefore`$ The shortest length pipe is $`37.2`$ units. + + +### Question 4 + +Let $`(x, y)`$ be the center of the circle, and $`r`$ be the radius of the circle. + + +```math +\begin{cases} +(x-4)^2 + (y-8)^2 = r^2 & \text{(1)} \\ + +(x-5)^2 + (y-1)^2 = r^2 & \text{(2)} \\ + +(x+2)^2 + y^2 = r^2 & \text{(3)} \\ + +\end{cases} +``` + +Sub $`(1)`$ into $`(2)`$ + +$`x^2 + 8x + 16 + y^2 - 16y + 64 = x^2 - 10x + 25 + y^2 -2y + 1`$ + +$`-8x -16y + 80 = -10x - 2y + 26`$ + +$`2x - 14y = -54`$ + +$`x - 7y = -27 \quad (4)`$ + +Sub $`(2)`$ into $`(3)`$ + +$`x^2 + 10x + 25 + y^2 - 2y + 1 = x^2 + 4x + 4 + y^2`$ + +$`10x - 2y +26 = 4x + 4`$ + +$`14x + 2y = 22`$ + +$`7x + y = 11`$ + +$`y = 11 - 7x \quad (5)`$ + +Sub $`(5)`$ into $`(4)`$ + +$`x - 7(11-7x) = -27`$ + +$`x - 77+ 49x = 27`$ + +$`50x = 50`$ + +$`x = 1 \quad (6)`$ + +Sub $`(6)`$ into $`(5)`$ + +$`y = 11 - 7(1)`$ + +$`y = 4 \quad (7)`$ + +Sub $`(6), (7)`$ into $`(3)`$ + +$`(1+2)^2 + 4^2 = r^2`$ + +$`r^2 = 16 + 9`$ + +$`r^2 = 25`$ + +$`\therefore (x-1)^2 + (y-4)^2 = 25`$ is the equation of the circle. + + + + +