From 7fa388a3b330a0a3e6de75002087bac1883ee016 Mon Sep 17 00:00:00 2001 From: James Su Date: Sun, 12 Jan 2020 23:54:32 +0000 Subject: [PATCH] Update Unit 1: Analytical Geometry.md --- ... => Unit 1: Analytical Geometry Part 1.md} | 123 +----------------- 1 file changed, 1 insertion(+), 122 deletions(-) rename Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/{Unit 1: Analytical Geometry.md => Unit 1: Analytical Geometry Part 1.md} (57%) diff --git a/Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Unit 1: Analytical Geometry.md b/Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Unit 1: Analytical Geometry Part 1.md similarity index 57% rename from Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Unit 1: Analytical Geometry.md rename to Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Unit 1: Analytical Geometry Part 1.md index 411b6b1..62de48b 100644 --- a/Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Unit 1: Analytical Geometry.md +++ b/Grade 10/Math/MPM2DZ/Math Oral Presentation Questions/Unit 1: Analytical Geometry Part 1.md @@ -1,4 +1,4 @@ -## Analytical Geometry +## Analytical Geometry Part 1 ### Question 1 a) @@ -126,124 +126,3 @@ $`x = \dfrac{44}{6} = \dfrac{22}{3} \quad (3)`$ By $`(1)`$, $`y=8`$. $`\therefore`$ The centroid is at $`(\dfrac{22}{3}, 8)`$ - -### Question 3 - -Shortest distance = straight perpendicular line that connets $`A`$ to a point on line $`\overline{GH}`$ - -$`M_{GH} = \dfrac{42+30}{38 + 16} = \dfrac{72}{54} = \dfrac{4}{3}`$ - -$`M_{\perp GH} = \dfrac{-3}{4}`$ - -$`y_{\perp GH} - 32 = \dfrac{-3}{4}(x+16)`$ - -$`y_{\perp GH} = \dfrac{-3}{4}x + 20 \quad (1)`$ - -$`y_{GH} + 30 = \dfrac{4}{3}(x+16)`$ - -$`y_{GH} = \dfrac{4}{3}x - \dfrac{26}{3} \quad (2)`$ - -```math -\begin{cases} - -y_{\perp GH} = \dfrac{-3}{4}x + 20 & \text{(1)} \\ - -\\ - -y_{GH} = \dfrac{4}{3}x - \dfrac{26}{3} & \text{(2}) \\ -\end{cases} -``` - -Sub $`(1)`$ into $`(2)`$ - -$`\dfrac{-3}{4}x + 20 = \dfrac{4}{3}x - \dfrac{26}{3}`$ - -$`-9x + (12)20 = 16x - 4(26)`$ - -$`25x = 344`$ - -$`x = \dfrac{344}{25} \quad (3)`$ - -Sub $`(3)`$ into $`(1)`$ - -$`y = \dfrac{-3}{4}(\dfrac{344}{25}) + 20`$ - -$`y = \dfrac{-258}{25} + 20`$ - -$`y = \dfrac{-258}{25} + \dfrac{500}{25}`$ - -$`y = \dfrac{242}{25}`$ - -Distance $`= \sqrt{(-16-\dfrac{344}{25})^2 + (32 - \dfrac{242}{25})^2} = 37.2`$ - -$`\therefore`$ The shortest length pipe is $`37.2`$ units. - - -### Question 4 - -Let $`(x, y)`$ be the center of the circle, and $`r`$ be the radius of the circle. - - -```math -\begin{cases} -(x-4)^2 + (y-8)^2 = r^2 & \text{(1)} \\ - -(x-5)^2 + (y-1)^2 = r^2 & \text{(2)} \\ - -(x+2)^2 + y^2 = r^2 & \text{(3)} \\ - -\end{cases} -``` - -Sub $`(1)`$ into $`(2)`$ - -$`x^2 - 8x + 16 + y^2 - 16y + 64 = x^2 - 10x + 25 + y^2 -2y + 1`$ - -$`-8x -16y + 80 = -10x - 2y + 26`$ - -$`2x - 14y = -54`$ - -$`x - 7y = -27 \quad (4)`$ - -Sub $`(2)`$ into $`(3)`$ - -$`x^2 - 10x + 25 + y^2 - 2y + 1 = x^2 + 4x + 4 + y^2`$ - -$`-10x - 2y +26 = 4x + 4`$ - -$`14x + 2y = 22`$ - -$`7x + y = 11`$ - -$`y = 11 - 7x \quad (5)`$ - -Sub $`(5)`$ into $`(4)`$ - -$`x - 7(11-7x) = -27`$ - -$`x - 77+ 49x = 27`$ - -$`50x = 50`$ - -$`x = 1 \quad (6)`$ - -Sub $`(6)`$ into $`(5)`$ - -$`y = 11 - 7(1)`$ - -$`y = 4 \quad (7)`$ - -Sub $`(6), (7)`$ into $`(3)`$ - -$`(1+2)^2 + 4^2 = r^2`$ - -$`r^2 = 16 + 9`$ - -$`r^2 = 25`$ - -$`\therefore (x-1)^2 + (y-4)^2 = 25`$ is the equation of the circle. - - - - -