1
0
mirror of https://gitlab.com/magicalsoup/Highschool.git synced 2025-01-23 16:11:46 -05:00

Update Merge Sort.md

This commit is contained in:
James Su 2019-10-25 16:24:55 +00:00
parent 057498ebc0
commit 88bf506222

View File

@ -23,3 +23,44 @@ def mergesort(left, right, array[]):
- Latop computer can run close to $`10^8`$ per second.
- Supercomputer can execute $`10^{12}`$ compares per second.
### Insertion Sort $`(N^2)`$
|computer|thousand $`(10^3)`$|million $`(10^6)`$|billion $`(10^9)`$|
|:-------|:-------|:-------|:-------|
|home|instant|2.8 hours|317 years|
|super|instant|1 second|1 week|
### Merge Sort $`(N \log N)`$
|computer|thousand $`(10^3)`$|million $`(10^6)`$|billion $`(10^9)`$|
|:-------|:-------|:-------|:-------|
|home|instant|1 second|18 min|
|super|instant|instant|instant|
## Proof Sketch
**Proposition** Merge sort uses $`\le N \log N`$ compares to sort an array of length $`N`$.
**Proof Sketch** The number of compares $`C(N)`$ to mergesort an array of length $`N`$ satisfies the recurrence:
```math
C(N) \le C(\lceil N/2 \rceil) + C(\lfloor N/2 \rfloor) + N \text{ for } N \gt 1, \text{ with } C(1) = 0.
```
## Divide and conquer recurrence induction proof
**Proposition**. If $`D(N)`$ satisfies $`D(N)=2D(N/2) + N`$ for $`N \gt 1`$, with $`D(1) = 0,`$ then $`D(N) = N \log N`$.
**Proof** [assuming $`N`$ is a power of $`2`$]
- Base case: $`N = 1`$
- Inductive hypothesis: $`D(N) = N \log N`$.
- Goal: show that $`D(2N) = (2N) = \log (2N)`$
$`D(2N) = 2D(N) + 2N`$ <br>
$`\quad = 2 N \log N + 2N`$ <br>
$`\quad = 2 N (log (2N) - 1) + 2N`$ <br>
$`\quad = 2 N \log (2N)`$
## Resources
- Princeton University: https://algs4.cs.princeton.edu/lectures/22Mergesort.pdf