diff --git a/Grade 10/Math/MPM2DZ/Trig Quiz 1.md b/Grade 10/Math/MPM2DZ/Trig Quiz 1.md index 5b708b4..5c4809c 100644 --- a/Grade 10/Math/MPM2DZ/Trig Quiz 1.md +++ b/Grade 10/Math/MPM2DZ/Trig Quiz 1.md @@ -4,7 +4,7 @@ $`\because \angle B^\prime = \angle B \quad (\text{PLT-F})`$ $`\because \angle C^\prime = \angle C \quad (\text{PLT-F})`$ -$`\therefore \triangle AB^\prime C^\prime \sim \triangle ABC \quad (\text{ AA } \sim) `$ +$`\therefore \triangle AB^\prime C^\prime \sim \triangle ABC \quad (\text{AA } \sim) `$ $`\therefore \dfrac{AB^\prime}{B^\prime C^\prime} = \dfrac{AB}{BC} `$ @@ -16,9 +16,9 @@ $`x = \dfrac{22(30)}{14} - 30 `$ $`x = 17.1428571 \approx 17.14 `$ -$`\dfrac{AC^\prime}{B^\prime C^\prime} = \dfrac{AC}{BC} `$ +$`\therefore \dfrac{AC^\prime}{B^\prime C^\prime} = \dfrac{AC}{BC} `$ -$`\dfrac{y}{14} = \dfrac{y+15}{22} `$ +$`\therefore \dfrac{y}{14} = \dfrac{y+15}{22} `$ $`22y = 14y + 14(15) `$ @@ -49,7 +49,7 @@ $`\angle CB^\prime T = \sin^{-1} \Bigl(\dfrac{5.99}{6.8} \Bigr)`$ $`\angle CB^\prime T = 61.75^o`$ -$`\angle AB^\prime C = 180 - 61.75 = 118.25^o (\text{ Complentary Angle Theorem})`$ +$`\angle AB^\prime C = 180 - 61.75 = 118.25^o (\text{CAT})`$ $`\angle ACB^\prime = 180 - 118.25 - 32 = 29.75^o (\text{ASTT})`$ @@ -64,9 +64,9 @@ $`AB = 6.37`$ ------------------------- $`\text{ Case } 2: `$ -$`\angle ABC = 61.75`$ +$`\angle ABC = \angle CB^\prime T = 61.75^o (\text{ITT})`$ -$`\angle ACB = 180 - 32 - 61.75 = 86.25^o (\text{ ASTT})`$ +$`\angle ACB = 180 - 32 - 61.75 = 86.25^o (\text{ASTT})`$ $`\dfrac{AB}{\sin C} = \dfrac{CB}{\sin A}`$ @@ -82,17 +82,17 @@ $`\therefore AB \text{ could either be } 6.37cm \text{ or } 12.8cm`$ # Question 3 -$`\text{let the square be } \square ABCD \text{ and the inner triangle } \triangle AEF `$ +$`\text{let the square be } \square ABCD \text{ and the inner triangle be } \triangle AEF `$ $`\sin (\beta) = \dfrac{EF}{AE} = \dfrac{EF}{1} = EF`$ -$`\sin (\alpha) \sin(\beta) = \dfrac{EF}{AE} \times \dfrac{EC}{EF} = \dfrac{EC}{AE} = \dfrac{EC}{1} = EC`$ +$`\sin (\alpha) \sin(\beta) = \dfrac{EC}{EF} \times \dfrac{EF}{AE} = \dfrac{EC}{AE} = \dfrac{EC}{1} = EC`$ $`\cos(\alpha) \sin(\beta) = \dfrac{CF}{EF} \times \dfrac{EF}{AE} = \dfrac{CF}{AE} = \dfrac{CF}{1} = CF`$ -$`\text{Draw a parallel line to } CD \text{ that connects point } E \text{ to } AD. \sin(\alpha + \beta) = \dfrac{CD}{AE} = \dfrac{CD}{1} = CD`$ +$`\text{Draw a parallel line to } CD \text{ that connects point } E \text{ to } AD. \quad \sin(\alpha + \beta) = \dfrac{CD}{AE} = \dfrac{CD}{1} = CD`$ $`\cos(\alpha) \cos(\beta) = \dfrac{AD}{AF} \times \dfrac{AF}{AE} = \dfrac{AD}{1} = AD`$ @@ -100,4 +100,16 @@ $`\sin(\alpha) \cos(\beta) = \dfrac{FD}{AF} \times \dfrac{AF}{AE} = \dfrac{FD}{1 $`\cos(\beta) = \dfrac{AF}{AE} = \dfrac{AF}{1} = AF`$ -$`\text{Draw a parallel line to } CD \text{ that connects point } E \text{ to } AD. \cos(\alpha + \beta) = \dfrac{BE}{AE} = \dfrac{BE}{1} = BE`$ +$`\text{Draw a parallel line to } CD \text{ that connects point } E \text{ to } AD. \quad \cos(\alpha + \beta) = \dfrac{BE}{AE} = \dfrac{BE}{1} = BE`$ + +## Footer Notes + +$`\text{ASTT} = \text{ Angle Sum Of Triangle Theorem}`$ + +$`\text{ITT} = \text{ Isoceles Triangle Theorem}`$ + +$`\text{CAT} = \text{ Corresponding Angle Theorem}`$ + +$`\text{PLT-F} = \text{ Parallel Line Theorem; F-pattern}`$ + +$`\text{AA} \sim \space = \text{ Angle Angle Similarity Theorem}`$ \ No newline at end of file