mirror of
https://gitlab.com/magicalsoup/Highschool.git
synced 2025-10-04 02:30:51 -04:00
Update Unit 2: Quadratic Equations.md
This commit is contained in:
@@ -0,0 +1,146 @@
|
||||
## Quadratic Equations 1
|
||||
|
||||
### Question 1 a)
|
||||
|
||||
The zeroes of a quadratic equation are the solutions of $`x`$ when $`ax^2+bx+c = 0`$. The roots of the quadratic equation is when $`(x + r_1)(x + r_2) = 0`$, more
|
||||
commonly described by the formula $`\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}`$. Therefore the roots of a quadratic equation are also the zeroes of the quadratic equation.
|
||||
|
||||
### Question 1 b)
|
||||
|
||||
$`D = b^2 - 4ac`$
|
||||
|
||||
If $`D=0`$, there is one zero.
|
||||
|
||||
$`\therefore n^2 - 4(1)(9) = 0`$
|
||||
|
||||
$`n^2 - 36 = 0`$
|
||||
|
||||
$`(n+6)(n-6) = 0`$
|
||||
|
||||
$`n = \pm 6`$
|
||||
|
||||
### Question 1 c)
|
||||
|
||||
Let $`h`$ be the height and $`b`$ be the base. $`h = 2b + 4`$.
|
||||
|
||||
$`\therefore (2b+4)(b) = 168(2)`$
|
||||
|
||||
$`2b^2 + 8b = 168(2)`$
|
||||
|
||||
$`b^2 + 4b - 168 = 0`$
|
||||
|
||||
$`b = \dfrac{-4 \pm \sqrt{16+4(168)}}{2}`$
|
||||
|
||||
$`b = \dfrac{-4 \pm 4\sqrt{43}}{2}`$
|
||||
|
||||
$`b = -2 + 2\sqrt{85}`$
|
||||
|
||||
### Question 2 a)
|
||||
|
||||
If the quadratic is in $`ax^2 + bx + c`$, the AOS (axis of symmetry) is at $`\dfrac{-b}{2a}`$. And you can plug that value into the quadratic equation to get your optimal value,
|
||||
which is:
|
||||
|
||||
$`= a(\dfrac{-b}{2a})^2 + b(\dfrac{-b}{2a}) + c`$
|
||||
|
||||
$`= \dfrac{b^2}{4a} + \dfrac{-b^2}{2a} + c`$
|
||||
|
||||
$`= \dfrac{-b^2}{4a} + c`$
|
||||
|
||||
### Question 2 b)
|
||||
|
||||
$`2x^2 + 5x - 1 = 0`$
|
||||
|
||||
$`2(x^2 + \dfrac{5}{2}x + (\dfrac{5}{4})^2 - (\dfrac{5}{4})^2) - 1 = 0`$
|
||||
|
||||
$`2(x+\dfrac{5}{4})^2 - \dfrac{25}{8} - 1 = 0`$
|
||||
|
||||
$`2(x+ \dfrac{5}{4})^2 - \dfrac{33}{8} = 0`$
|
||||
|
||||
$`(x+ \dfrac{5}{4})^2 = \dfrac{33}{16}`$
|
||||
|
||||
$`x = \pm \sqrt{\dfrac{33}{16}} - \dfrac{5}{4}`$
|
||||
|
||||
$`x = \dfrac{\pm \sqrt{33}}{4} - \dfrac{5}{4}`$
|
||||
|
||||
$`x = \dfrac{\sqrt{33}-5}{4}`$ or $`\dfrac{-\sqrt{33} - 5}{4}`$
|
||||
|
||||
### Question 2 c)
|
||||
|
||||
Let $`w`$ be the width between the path and flowerbed, $`x`$ be the length of the whole rectangle and $`y`$ be the whole rectangle (flowerbed + path).
|
||||
|
||||
$`x = 9+2w`$
|
||||
|
||||
$`y = 6+2w`$
|
||||
|
||||
$`(6+2w)(9+2w) - (6)(9 = (6)(9)`$
|
||||
|
||||
$`54 + 12w + 18w + 4w^2 = 2(54)`$
|
||||
|
||||
$`4w^2 + 30w = 54`$
|
||||
|
||||
$`2w^2 + 15w - 27 = 0`$
|
||||
|
||||
$`(2w-3)(w+9) = 0`$
|
||||
|
||||
$`w = \dfrac{3}{2}, -9`$
|
||||
|
||||
$`\because w \gt 0`$
|
||||
|
||||
$`\therefore w = \dfrac{3}{2}`$
|
||||
|
||||
$`\therefore x = 9+3 = 12`$
|
||||
|
||||
$`\therefore y = 6+3 = 9`$
|
||||
|
||||
$`P = 2(x + y) \implies P = 2(12+9) \implies P = 42`$
|
||||
|
||||
$`\therefore`$ The perimeter is $`42m`$
|
||||
|
||||
### Question 3 a)
|
||||
|
||||
Use discriminant, where $`D = b^2 - 4ac`$.
|
||||
|
||||
```math
|
||||
\begin{cases}
|
||||
|
||||
\text{If } D \gt 0 & \text{Then there are 2 real distinct solutions} \\
|
||||
|
||||
\text{If } D = 0 & \text{Then there is 1 real solution} \\
|
||||
|
||||
\text{If } D \lt 0 &\text{Then there are no real solutions} \\
|
||||
|
||||
\end{cases}
|
||||
```
|
||||
|
||||
### Question 3 b)
|
||||
|
||||
$`y = 12x^2 - 5x - 2`$
|
||||
|
||||
$`y = (3x-2)(4x+1)`$
|
||||
|
||||
$`\therefore`$ The $`x`$-intercepts are at $`\dfrac{2}{3}, \dfrac{-1}{4}`$
|
||||
|
||||
### Question 3 c)
|
||||
|
||||
When $`P(x) = 0`$, that means it is the break-even point for a value of $`x`$ (no profit, no loss).
|
||||
|
||||
$`2k^2 + 12k - 10 = 0 \implies k^2 -6k + 5 = 0`$
|
||||
|
||||
$`(k-5)(k-1) = 0`$
|
||||
|
||||
$`k = 5, 1`$
|
||||
|
||||
Either $`5000`$ or $`1000`$ rings must be produced so that there is no prodift and no less.
|
||||
|
||||
AOS (axis of symmetry) = $`\dfrac{-b}{2a} = \dfrac{6}{2} = 3`$
|
||||
|
||||
$`\therefore 3000`$ rings should be made to achieve the optimal value.
|
||||
|
||||
Maximum profit $`= -2(3)^2 + 12(3) - 10`$
|
||||
|
||||
$`= -18 + 30 - 10`$
|
||||
|
||||
$` = 8`$
|
||||
|
||||
$`\therefore 8000`$ dollars is the maximum profit.
|
||||
|
Reference in New Issue
Block a user