From d9fd6b5dfd188a271821ef855965853f035c6ed1 Mon Sep 17 00:00:00 2001 From: James Su Date: Thu, 9 Jan 2020 02:22:26 +0000 Subject: [PATCH] Update Unit 6: Functions.md --- Grade 10/Math/MPM2DZ/Unit 6: Functions.md | 124 ++++++++++++++++++++++ 1 file changed, 124 insertions(+) diff --git a/Grade 10/Math/MPM2DZ/Unit 6: Functions.md b/Grade 10/Math/MPM2DZ/Unit 6: Functions.md index e69de29..b9bc0e2 100644 --- a/Grade 10/Math/MPM2DZ/Unit 6: Functions.md +++ b/Grade 10/Math/MPM2DZ/Unit 6: Functions.md @@ -0,0 +1,124 @@ +# Unit 6: Functions + +## Functions + +`Function`: a correspondnce between two sets of elements. It "links" each element between the first set with **one and only one element** in the second set. +- The first set is called the `Domain` (**values of x**) +- The second set is called the `Range` (**values of y**) + +A **relation** is something that **relates** a variable to another. It is slightly different than a function. All functions are relations, **but not all relations are functions!** + +`Vertical Line Test`: A test to check whether or not a relation is a function. If a **vertical line** parallel to the y-axis can be drawn through any 2 points on a relation, then +that relation is **not a function**. + +`Horizontal Line test`: A test to check whetehr or not the inverse of a function is also a function. If a **horizontal line** parallel to the x-axis can be drawn through any 2 points on a function, then the inverse of that function is **not a function**. + +## Types Of Functions + +|Function|Base Form|Domain|Range| +|:-------|:--------|:-----|:----| +|Linear Function|$`y=x`$|$`\{ x \mid x \in \mathbb{R} \}`$|$`\{y \mid y \in \mathbb{R} \}`$| +|Quadratic Function|$`y=x^2`$|$`\{x \mid x \in \mathbb{R} \}`$|$`\{y \mid y \ge 0, y \in \mathbb{R} \}`$| +|Cubic Function|$`y=x^3`$|$`\{x \mid x \in \mathbb{R} \}`$|$`\{y \mid y \in \mathbb{R} \}`$| +|Square Root Function|$`y= \sqrt{x}`$|$`\{x \mid x \ge 0, x \in \mathbb{R}\}`$|$`\{y \mid y \ge 0, y \in \mathbb{R}\}`$| +|Absolute Value Function|$`y = \| x \|`$|$`\{ x \mid x \in \mathbb{R}\}`$|$`\{y \mid y \ge 0, y \in \mathbb{R}\}`$| +|Reciprocal Function|$`y = \dfrac{1}{x}`$|$`\{x \mid x =\not 0, x \in \mathbb{R}\}`$|$`\{y \mid y =\not 0, y \in \mathbb{R}\}`$| +|Exponential Function|$`y = 2^x`$|$`\{x \mid x \in \mathbb{R}\}`$|$`\{y \mid y \gt 0, y \in \mathbb{R}\}`$| +|Logarithmic Function (Inverse of the Exponential Function)|$`y = \log (x)`$|$`\{x \mid x \gt 0, x \in \mathbb{R}\}`$|$`\{y \mid y \in \mathbb{R}\}`$| + + +To get base points, simply choose integers in the range $`-3 \le x \le 3`$ (cause they are small, and $`0`$ is always a great choice), and plug it in as the x-value and you will get the value from the specific function, and that will be one +of your base points. + +## Piecewise Functions +These are functions that are made of multiple functions. Thus they have a specified domain for each piece. Examples include: + +```math +f(x) = \begin{cases} + +x^2 & \text{if } x \lt 2 \\ + +6 & \text{if } x = 2 \\ + +10 - x & \text{if } 2 \lt x \le 6 \\ + +\end{cases} + +\quad \text{and} \quad + +f(x) = \begin{cases} + +-4 & \text{if } -8 \lt x \le -3 \\ + +x - 2 & \text{if } -3 \lt x \lt 0 \\ + +\sqrt{x} & \text{if } 0 \lt x \le 8 \\ + +\end{cases} +``` + +Reminder, if the function does not include a point, make sure to use a empty dot ($`\circ`$) instead of a filled dot ($`\bullet`$). + +## Functions With Other Functions (Compositions of Functions) + +Let $`f(x), g(x)`$ represent two functions. We can do other things with functions, such as: +- **Add** two functions: $`f(x) + g(x)`$ +- **Subtract** two functions: $`f(x) - g(x)`$ +- **Multiply** two functions: $`f(x) \times g(x)`$ +- **Divide** two functions: $`\dfrac{f(x)}{g(x)}`$ +- Find the **inverse** of a function: $`f^{-1}(x)`$ + + +It is also possbile to put functions within of functions, such as $`f(g(x))`$. This can also be represented as $`(f \circ g)(x)`$. $`f(g(x))`$ is an example of a **Composite Function**. + +## Transformation Of Functions. + +Any functions can be repsented in a form $`\Huge y = af[k(x-d)] + c`$ + +The **mapping rule** states for a base point $`(x, y)`$, the new point will be $`(\dfrac{1}{k}x + d, ay + c)`$. + +### Vertical Translations +If $`d \lt 0`$, the graph moves to the **left** horizontally $`d`$ units. + +If $`d \gt 0`$, the graph moves to the **right** horizontally $`d`$ units. + +### Horizontal Translations + +If $`c \lt 0`$, the graph moves **down** vertically $`d`$ units. + +if $`c \gt 0`$, the graph moves **up** vertically $`d`$ units. + +### Vertical Stretch/Compressions + +If $`0 \lt a \lt 1`$, then the graph gets **compressed** by a **factor of** $`a`$. + +If $`a \gt 1`$, then the graph gets **stretched** by a **factor of** $`a`$. + +### Horizontal Stretch/Compressions +If $`0 \lt k \lt 1`$, then the graph gets **stretched** by a **factor of** $`\dfrac{1}{k}`$ + +If $`k \gt 1`$, then the graph gets **compressed** by a **factor of** $`\dfrac{1}{k}`$. + +### Vertical/Horiztonal Relfections + +If $`a \lt 0`$, then the graph gets reflected over the **x-axis**. + +If $`k \lt 0`$, then the graph gets reflected over the **y-axis**. + +## Finding Inverse + +To find the inverse, simply replace $`f(x)`$ with $`x`$ and $`x`$ with $`y`$. Then try to model the equation for $`y`$. That will be the inverse function of the original function. + +After swtiching them, here a few tips for some of the functions. + +For the `quadratic function`, **complete the square** and model the equation for $`y`$. + +For the `reciprocal function`, cross multiply, then factor out the $`y`$, and then model the equation for $`y`$. State restrictions whenever necessary. + +For the `square root funtion`, make sure to state your restrictions since without, it becomes the inverse of a quadratic equation. + +Remember to change to $`f^{-1}`$ **only if** the relation is a function for the inverse. + + + +