From ecaf30a860fd4165ca44b771f4e1852f61c9e5ee Mon Sep 17 00:00:00 2001 From: James Su Date: Wed, 13 Nov 2019 20:21:50 +0000 Subject: [PATCH] Update Trig Quiz 1.md --- Grade 10/Math/MPM2DZ/Trig Quiz 1.md | 94 ++++++++++++++--------------- 1 file changed, 47 insertions(+), 47 deletions(-) diff --git a/Grade 10/Math/MPM2DZ/Trig Quiz 1.md b/Grade 10/Math/MPM2DZ/Trig Quiz 1.md index 6a4b93f..26275ca 100644 --- a/Grade 10/Math/MPM2DZ/Trig Quiz 1.md +++ b/Grade 10/Math/MPM2DZ/Trig Quiz 1.md @@ -1,67 +1,45 @@ # Question 1 -```math +$`\because \angle B^\prime = \angle B \quad (\text{Corresonding Line theorem})`$ -\because \angle B^\prime = \angle B \quad (\text{Corresonding Line theorem}) \\ +$`\because \angle C^\prime = \angle C \quad (\text{Corresponding Line theorem})`$ -\because \angle C^\prime = \angle C \quad (\text{Corresponding Line theorem}) \\ +$`\therefore \triangle AB^\prime C^\prime \sim \triangle ABC \quad (\text{ AA } \sim) `$ -\therefore \triangle AB^\prime C^\prime \sim \triangle ABC \quad (\text{ AA } \sim) \\ \\ +$`\therefore \dfrac{AB^\prime}{B^\prime C^\prime} = \dfrac{AB}{BC} `$ -\therefore \dfrac{AB^\prime}{B^\prime C^\prime} = \dfrac{AB}{BC} \\ +$`\therefore \dfrac{30}{14} = \dfrac{30+x}{22}`$ -\quad \\ +$`14(30+x) = 22(30) `$ +$`x = \dfrac{22(30)}{14} - 30 `$ -\therefore \dfrac{30}{14} = \dfrac{30+x}{22} \\ \\ +$`x = 17.1428571 \approx 17.14 `$ -\quad \\ +$`\dfrac{AC^\prime}{B^\prime C^\prime} = \dfrac{AC}{BC} `$ -14(30+x) = 22(30) \\ +$`\dfrac{y}{14} = \dfrac{y+15}{22} `$ -\quad \\ +$`22y = 14y + 14(15) `$ -x = \dfrac{22(30)}{14} - 30 \\ +$`8y = 14(15) `$ -\quad \\ - -x = 17.1428571 \approx 17.14 -``` - -```math - -\dfrac{AC^\prime}{B^\prime C^\prime} = \dfrac{AC}{BC} \\ - -\quad \\ - -\dfrac{y}{14} = \dfrac{y+15}{22} \\ - -\quad \\ - -22y = 14y + 14(15) \\ - -8y = 14(15) \\ - -y = 26.25 - -``` +$`y = 26.25`$ # Question 2 -```math +$`h = b \sin A`$ -h = b \sin A \\ +$`h = 11.3 \sin 32`$ -h = 11.3 \sin 32 \\ +$`h = 5.99`$ -h = 5.99 \\ +$`\because h \le 6.8 \le 11.3`$ -\because h \le 6.8 \le 11.3 \\ +$`\therefore 2 \triangle 's \text{ exist}`$ -\therefore 2 \triangle 's \text{ exist} \\ +$`\text{ Lets call point } T \text{ is the height that is perpendicular on side } AB \text{ and connects to point } C. \text { and } B^\prime \text{ be the other possible point of } B.`$ -\text{ Lets call point } T \text{ is the height that is perpendicular on side } AB \text{ and connects to point } C. \text { and } B^\prime \text{ be the other possible point of } B. -``` ------------------------- $`\text{ Case } 1:`$ @@ -71,18 +49,18 @@ $`\angle CB^\prime T = 61.75^o`$ $`\angle AB^\prime C = 180 - 61.75 = 118.25^o (\text{ Complentary Angle Theorem})`$ -$`\angle ACB^\prime = 180 - 61.75 - 32 = 86.25^o (\text{ASTT})`$ +$`\angle ACB^\prime = 180 - 118.25 - 32 = 29.75^o (\text{ASTT})`$ $`\dfrac{AB}{\sin \angle ACB^\prime} = \dfrac{CB^\prime}{\sin A}`$ -$`\dfrac{AB}{\sin86.25} = \dfrac{6.8}{\sin 32}`$ +$`\dfrac{AB}{\sin29.75} = \dfrac{6.8}{\sin 32}`$ -$`AB = \dfrac{\sin 86.25 \times 6.8}{\sin32}`$ +$`AB = \dfrac{\sin 29.75 \times 6.8}{\sin32}`$ -$`AB = 12.8`$ +$`AB = 6.37`$ ------------------------- -$`\text{ Case} 2: `$ +$`\text{ Case } 2: `$ $`\angle ABC = 61.75`$ @@ -92,4 +70,26 @@ $`\dfrac{AB}{\sin C} = \dfrac{CB}{\sin A}`$ $`\dfrac{AB}{\sin 86.25} = \dfrac{6.8}{\sin 32}`$ -$`AB = \ No newline at end of file +$`AB = \dfrac{\sin 86.25 \times 6.8}{\sin 32}`$ + +$`AB = 12.8`$ + +# Question 3 + +$`\text{let the square be } ABCD \text{ and the inner triangle } AEF `$ + +$`\sin (\beta) = \dfrac{EF}{AE} = \dfrac{EF}{1} = EF`$ + +$`\sin (\alpha) \sin(\beta) = \dfrac{EF}{AE} \times \dfrac{EC}{EF} = \dfrac{EC}{AE} = \dfrac{EC}{1} = EC`$ + +$`\cos(\alpha) \sin(\beta) = \dfrac{CF}{EF} \times \dfrac{EF}{AE} = \dfrac{CF}{AE} = \dfrac{CF}{1} = CF`$ + +$`\text{Draw a parallel line to } CD \text{ that connects point } E \text{ to } AD. \sin(\alpha + \beta) = \dfrac{CD}{AE} = \dfrac{CD}{1} = CD`$ + +$`\cos(\alpha) \cos(\beta) = \dfrac{AD}{AF} \times \dfrac{AF}{AE} = \dfrac{AD}{1} = AD`$ + +$`\sin(\alpha) \cos(\beta) = \dfrac{FD}{AF} \times \dfrac{AF}{AE} = \dfrac{FD}{1} = FD`$ + +$`\cos(\beta) = \dfrac{AF}{AE} = \dfrac{AF}{1} = AF`$ + +$`\text{Draw a parallel line to } CD \text{ that connects point } E \text{ to } AD. \cos(\alpha + \beta) = \dfrac{BE}{AE} = \dfrac{BE}{1} = BE`$