mirror of
https://gitlab.com/magicalsoup/Highschool.git
synced 2025-01-24 00:21:45 -05:00
Update Quadratic Equations.md
This commit is contained in:
parent
bd167b1fa2
commit
f501256b8e
@ -121,6 +121,7 @@ $`\therefore`$ The $`x`$-intercepts are at $`\dfrac{2}{3}, \dfrac{-1}{4}`$
|
|||||||
### Question 3 c)
|
### Question 3 c)
|
||||||
|
|
||||||
When $`P(x) = 0`$, that means it is the break-even point for a value of $`x`$ (no profit, no loss).
|
When $`P(x) = 0`$, that means it is the break-even point for a value of $`x`$ (no profit, no loss).
|
||||||
|
|
||||||
$`2k^2 + 12k - 10 = 0 \implies k^2 -6k + 5 = 0`$
|
$`2k^2 + 12k - 10 = 0 \implies k^2 -6k + 5 = 0`$
|
||||||
|
|
||||||
$`(k-5)(k-1) = 0`$
|
$`(k-5)(k-1) = 0`$
|
||||||
@ -158,7 +159,7 @@ $`x = \dfrac{3 \pm \sqrt{23}}{7}`$
|
|||||||
$`\because \dfrac{1}{3}`$ and $`\dfrac{-2}{3}`$ are the roots of a quadratic equation, that must mean that $`(x-\dfrac{1}{3})(x-\dfrac{2}{3})`$ is a quadratic equation that
|
$`\because \dfrac{1}{3}`$ and $`\dfrac{-2}{3}`$ are the roots of a quadratic equation, that must mean that $`(x-\dfrac{1}{3})(x-\dfrac{2}{3})`$ is a quadratic equation that
|
||||||
gives those roots.
|
gives those roots.
|
||||||
|
|
||||||
After expanind we get:
|
After expanding we get:
|
||||||
|
|
||||||
$`y = x^2 - \dfrac{2}{3}x - \dfrac{1}{3}x + \dfrac{2}{3}`$
|
$`y = x^2 - \dfrac{2}{3}x - \dfrac{1}{3}x + \dfrac{2}{3}`$
|
||||||
|
|
||||||
@ -238,15 +239,10 @@ Since we know that $`(4, 5)`$ is also a point on the parabola, we can susbsitute
|
|||||||
$`5 = a + c \quad (2)`$
|
$`5 = a + c \quad (2)`$
|
||||||
|
|
||||||
```math
|
```math
|
||||||
|
|
||||||
\begin{cases}
|
\begin{cases}
|
||||||
|
|
||||||
9a + c = 0 & \text{(1)} \\
|
9a + c = 0 & \text{(1)} \\
|
||||||
|
|
||||||
a + c = 5 & \text{(2)} \\
|
a + c = 5 & \text{(2)} \\
|
||||||
|
|
||||||
\end{cases}
|
\end{cases}
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
$`(2) - (1)`$
|
$`(2) - (1)`$
|
||||||
|
Loading…
Reference in New Issue
Block a user