mirror of
https://gitlab.com/magicalsoup/Highschool.git
synced 2025-01-23 16:11:46 -05:00
Update Unit 1: Analytical Geometry.md
This commit is contained in:
parent
cb4f6910d6
commit
fa3b3d3b3d
@ -4,4 +4,60 @@
|
||||
- The slopes of parallel lines are `the same`
|
||||
- The slope of a vertical line is `undefined`
|
||||
- The slope of a horizontal line is `0`.
|
||||
The general equation of a line in standard form is $`ax+by+c=0`$, where $`a,b,c \in \mathbb{Z}, a>0`$
|
||||
- The general equation of a line in standard form is $`ax+by+c=0`$, where $`a,b,c \in \mathbb{Z}, a>0`$
|
||||
- `Radius`: The distance from the centre of a circle to a point on the circumference of the cricle.
|
||||
- `Diameter`: the distance across a circle measured through the centre
|
||||
- `Chord`: a line segment joining two points on a curve
|
||||
- `Circle`: a set of points in the plane which are equidistant (same distance) from the centre
|
||||
|
||||
## Distance Formula
|
||||
|
||||
The distance between points $`A(x_1, y_1)`$ and $`B(x_2, y_2)`$ in the cartesian plane is:
|
||||
|
||||
$`d = \sqrt{x^2 + y^2}`$
|
||||
|
||||
$`d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}`$
|
||||
|
||||
## Identifying Types of Traingles
|
||||
|
||||
|Triangle|Property|
|
||||
|:-------|:-------|
|
||||
|Equilateral|3 equal sides. Each angle is 60 degrees. Can't be right angled|
|
||||
|Isoceles|2 equal sides, 2 equal angles. May be right angled|
|
||||
|Scalene|No equal sides. No equal angles. May be right angled|
|
||||
|
||||
## Pythagorean Theorem Relationships
|
||||
|
||||
|Formula|Statement|
|
||||
|:------|:--------|
|
||||
|$`c^2 = a^2+b^2`$|The triangle must be right angled|
|
||||
|$`c^2 < a^2 + b^2`$|The triangle is acute|
|
||||
|$`c^2 > a^2 + b^2`$|The triangle is obtuse|
|
||||
|
||||
## Equation Of A Circle With Centre $`(0, 0)`$
|
||||
|
||||
Let $`P(x, y)`$ be any point on the circle, and $`O`$ be the origin $`(0, 0)`$.
|
||||
|
||||
Using Pythagorean Theorem,
|
||||
|
||||
$`x^2+ y^2 = OP^2`$
|
||||
|
||||
But, $`OP = r`$
|
||||
|
||||
$`\therefore x^2 + y^2 = r^2`$ is the equation of a circle with centre $`(0, 0)`$ and radius, $`r`$.
|
||||
|
||||
**Note: the coordinates of any point not on the cricle do not satisfy this equation**
|
||||
|
||||
## Semi-Cricle With Radius $`r`$, And Centre $`(0, 0)`$
|
||||
|
||||
If we solve for $`y`$ in the above equation $`y = \pm \sqrt{r^2-x^2}`$
|
||||
- $`y = +\sqrt{r^2-x^2}`$ is the **top half** of the circle.
|
||||
- $`y = -\sqrt{r^2-x^2}`$ is the **bottom half** of the circle
|
||||
|
||||
## Equation Of A Circle With Centre $`(x, y)`$
|
||||
|
||||
Let $`x_c, y_c`$ be the center
|
||||
|
||||
$`(x - x_c)^2 + (y - y_c)^2 = r^2`$
|
||||
|
||||
To get the center, just find a $`x, y`$ such that $`x - x_c = 0`$ and $`y - y_c = 0`$
|
Loading…
Reference in New Issue
Block a user