
Reading/Writing to File
Elina, Helena, Setareh, Shaevitha

1.
Writing To File

Why Write to File?

◉ You can save it for future use

◉ Allows you to print hard copy results and

distribute it

◉ Makes it more available to others

◉ Large data can be collected, stored and

formatted according to needs

Outputting to a File

◉ The PrintWriter class can be used to create a file and write data to it

◉ Necessary imports:

○ import java.io.PrintWriter;

○ import java.io.IOException

 OR

○ import java.io*; //imports the entire I/O library (stands for

input/output)

◉ It is declared similarly to the Scanner class:

○ PrintWriter output = new PrintWriter(“place_file_name_here.txt”);

◉ Different types of file can be created for data to be written to, depends

on the extension, e.g. “.txt” creates a text file while “.docx” creates a
word document

import java.io.PrintWriter;
import java.io.IOException;

public class PrintWriterExample {

public static void main(String[]args) throws IOException{
PrintWriter output = new PrintWriter(“mytextfile.txt”);
//creates a text file

output.println(“hello”):

 output.println(“world!”);
 output.close();
 }

}

Sample Code

- It is important to always

close the output stream,

else the output will not

show up on the file

- In the sample code a text

file is created for data to

be written to

import java.io.PrintWriter;

public class PrintWriterExample2 {
public static void main (String[]args) throws Exception {

 PrintWriter output = new
PrintWriter(“file.txt”);

 output.println(“Here is some sample
text.”);
 output.close(); //closes PrintWriter

}

2.
Reading to File

Why Read to File?

◉ Speed

◉ Less errors

◉ Easier to read individual cases

◉ Able to get data from sources other than the keyboard

◉ Changing information is easy (only on the file)

◉ More efficient (less time to test)

◉ Large amounts of data can be entered quickly

◉ At the testing stage, data can be carefully chosen to test

the program

How to Read to File?

◉ The File class is Java’s representation of a file or directory path

◉ It is used to identify/locate the file that is to be read

○ File file = new File(“place_file_name_here”); //declaration statement
◉ Scanner class is used to read from file

○ Scanner read = new Scanner(file);

○ Not the same thing as “new Scanner(System.in)” which takes input
from the keyboard

◉ Necessary imports

○ import java.util.Scanner;

○ import java.io.IOException;

○ import java.io.File;

Sample Code

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

public class ReadingToFileDemo {

public static void (String[] args) throws IOException {

 File file = new File(“text.txt”); //the file you are

reading from

 Scanner read = new Scanner(file);

 while (read.hasNext() == true) { //checks for tokens

 System.out.println(read.nextLine());

//reads and outputs each line from file

read.next(); //moves the cursor down

 }

 }

}

- A loop is used to read the file,

typically a while loop

- read.hasNext(), part of the boolean

class, checks if there are tokens, a

token is essentially a character

- If it returns true a line is read from file

and printed to screen

- read.next(), read.hasNextLine() can

also be used in substitute depending

on the way the text is organized in the

file

- For reading files with more than 1 line

of text an additional command must

be used to move the cursor down to

the next line

“Note: When using the boolean class
has method, e.g. hasNext(),
hasNextLine(), the cursor doesn’t
actually move

Sample Code

import java.util.Scanner;

import java.io.File;

public class ReadingToFileDemo2 {

public static void main(String[] args) throws Exception
{

 Scanner input = new
Scanner(System.in);
 File file = new File("file10.txt");
 Scanner read = new Scanner(file);

 System.out.print("Please enter a
username: ");
 String username =
input.nextLine();

 while(read.hasNextLine() == true) {
 read.nextLine();
 }
 read.close();
 read = new Scanner(file);

//Scanner must be reopened for continued use

 boolean isUsername = false;

 while (read.hasNext() == true && isUsername ==
false) {
 read.next(); //skips the first token,
"username"

 String temp = read.next();

 if (temp.equals(username)) {
 isUsername = true;
 }

 }

 if (isUsername == true) {
 System.out.println("You are logged
on.");

 } else {
 System.out.println("You do not hav
valid account.");
 }
 read.close();

 input.close();

- In cases where information is read from file at 2 or more

separate occasions, the reading to file Scanner must be

reopened

- This is because after the read scanner is used the cursor is

left at the end of the file with no more text to read

- In order to read info again the read Scanner has to be

reopened to set the cursor back to the start of the file

3.
Exceptions

What is an Exception?

◉ It is a class

◉ A form of throwable that indicates conditions that a

reasonable application might want to catch

◉ To “throw an exception” is to essentially throw any
errors of a certain nature to allow the program to

continue to run

import java.io.PrintWriter;

import java.util.Scanner;

import java.io.File;

[…]
public static void main (String[] args) throws

Exception

import java.io.PrintWriter;

import java.util.Scanner;

import java.io.File;

import java.io.IOException;

[...]

public static void main(String[] args) throws IOException

Exception vs IOException

- Both “throws Exception” and “throws IOException” are used
- IOException is a subclass of the Exception class, therefore any code that works

with IOException will also work with Exception

- Both codes above can be used; however, generally it is better practice to be

more specific

4.
Useful Methods

Scanner Class - Read to File

Type Method Descriptions

boolean hasNext() - Returns true if the scanner has another token in its input
- Does not advance past any input

boolean hasNextLine() - Returns true if there is another line in the input of this scanner
- Does not advance past any input

boolean hasNextInt() - Returns true if the next token in this scanner's input can be interpreted as
an int value in the default radix using the nextInt() method

String next(); - Finds and returns the next complete token from this Scanner

String nextLine() - Advances this scanner past the current line and returns the input that was
skipped

- Returns the rest of the current line, excluding any line separator at the
end

- Position is set to the beginning of the next line after

File Class - Read to File

Type Method Description

boolean canExecute() Tests whether the application executes the file.

boolean canRead() Tests whether the application can read from the file.

boolean exists() Checks whether the file or directory exists.

boolean renameTo(File
dest)

Renames the file.

boolean setReadOnly() Marks the file or directory named by this abstract pathname
so that only read operations are allowed.

Thanks foR

Listening!

