### Question 1 a) The zeroes of a quadratic equation are the solutions of $`x`$ when $`ax^2+bx+c = 0`$. The roots of the quadratic equation is when $`(x + r_1)(x + r_2) = 0`$, more commonly described by the formula $`\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}`$. Therefore the roots of a quadratic equation are also the zeroes of the quadratic equation. ### Question 1 b) $`D = b^2 - 4ac`$ If $`D=0`$, there is one zero. $`\therefore n^2 - 4(1)(4) = 0`$ $`n^2 - 16 = 0`$ $`(n+4)(n-4) = 0`$ $`n = \pm 4`$ ### Question 1 c) Let $`h`$ be the height and $`b`$ be the base. $`h = 2b + 4`$. $`\therefore (2b+4)(b) = 168(2)`$ $`4b^2 + 8b = 168(2)`$ $`b^2 + 2b = 84 = 0`$ $`b = \dfrac{-2 \pm \sqrt{4+4(84)}`$ $`b = \dfrac{-2 \pmm \sqrt{340}}{2}`$ $`b = -1 + \sqrt{85}`$ ### Question 2 a) If the quadratic is in $`ax^2 + bx + c`$, the AOS (axis of symmetry) is at $`\dfrac{-b}{2a}`$. And you can plug that value into the quadratic equation to get your optimal value, which is: $`= a(\dfrac{-b}{2a})^2 + b(\dfrac{-b}{2a}) + c`$ $`= \dfrac{b^2}{4a} + \dfrac{-b^2}{2a} + c`$ $`= \dfrac{-b^2}{4a} + c`$ ### Question 2 b) $`2x^2 + 5x - 1 = 0`$ $`2(x^2 + \dfrac{5}{2}x + (\dfrac{5}{4})^2 - (\dfrac{5}{4})^2) - 1 = 0`$ $`2(x+\dfrac{5}{4})^2 - \dfrac{25}{8} - 1 = 0`$ $`2(x+ \dfrac{5}{4})^2 - \dfrac{33}{8} = 0`$ $`(x+ \dfrac{5}{4})^2 = \dfrac{33}{16}`$ $`x = \pm \sqrt{\dfrac{33}{16}} - \dfrac{5}{4}`$ $`x = \dfrac{\pm \sqrt{33}}{4} - \dfrac{5}{4}`$ $`x = \dfrac{\sqrt{33}-5}{4}`$ or $`\dfrac{-\sqrt{33} - 5}{4}`$ ### Question 2 c) Let $`w`$ be the width between the path and flowerbed, $`x`$ be the length of the whole rectangle and $`y`$ be the whole rectangle (flowerbed + path). $`x = 9+2w`$ $`y = 6+2w`$ $`(6+2w)(9+2w) - (6)(9 = (6)(9)`$ $`54 + 12w + 18w + 4w^2 = 2(54)`$ $`4w^2 + 30w = 54`$ $`2w^2 + 15w - 27 = 0`$ $`2 \quad \quad -3`$ $`1 \quad \quad 9`$ $`(2w-3)(w+9) = 0`$ $`w = \dfrac{3}{2}, -9`$ $`\because w \gt 0`$ $`\therefore w = \dfrac{3}{2}`$ $`\therefore x = 9+3 = 12`$ $`\therefore y = 6+3 = 9`$ $`P = 2(x + y) \implies P = 2(12+9) \implies P = 42`$ $`\therefore`$ The perimeter is $`42m`$ ### Question 3 a) Use discriminant, where $`D = b^2 - 4ac`$. ```math \begin{cases} \text{If } D \gt 0 & \text{Then there are 2 real distinct solutions} \\ \text{If } D = 0 & \text{Then there is 1 real solution} \\ \text{If } D \lt 0 &\text{Then there are no real solutions} \\ \end{cases} ``` ### Question 3 b) $`y = 12x^2 - 5x - 2`$ $`3 \quad \quad -2`$ $`4 \quad \quad 1`$ $`y = (3x-2)(4x+1)`$ $`\therefore`$ The $`x`$-intercepts are at $`\dfrac{2}{3}, \dfrac{-1}{4}`$ ### Question 3 c) When $`P(x) = 0`$, that means it is the break-even point for a value of $`x`$ (no profit, no loss). $`2k^2 + 12k - 10 = 0 \implies k^2 -6k + 5 = 0`$ $`(k-5)(k-1) = 0`$ $`k = 5, 1`$ Either $`5000`$ or $`1000`$ rings must be produced so that there is no prodift and no less. AOS (axis of symmetry) = $`\dfrac{-b}{2a} = \dfrac{6}{2} = 3`$ $`\therefore 3000`$ rings should be made to achieve the optimal value. Maximum profit $`= -2(3)^2 + 12(3) - 10`$ $`= -18 + 30 - 10`$ $` = 8`$ $`\therefore 8000`$ dollars is the maximum profit. ### Question 4 a) $`5x(x-1) + 5 = 7 + x(1-2x)`$ $`5x^2 - 5x = 2 + x - 2x^2`$ $`7x^2 - 6x - 2 = 0`$ $`x = \dfrac{6 \pm \sqrt{92}}{14}`$ $`x = \dfrac{3 \pm \sqrt{23}}{7}`$ ### Question 4 b). $`\because \dfrac{1}{3}`$ and $`\dfrac{-2}{3}`$ are the roots of a quadratic equation, that must mean that $`(x-\dfrac{1}{3})(x-\dfrac{2}{3})`$ is a quadratic equation that gives those roots. After expanind we get: $`y = x^2 - \dfrac{2}{3}x - \dfrac{1}{3}x + \dfrac{2}{3}`$ $`y = x^2 - x + \dfrac{2}{3}`$ Now we complete the square. $`y = x^2 - x + (\dfrac{1}{2})^2 - (\dfrac{1}{2})^2 + \dfrac{2}{3}`$ $`y = (x-\dfrac{1}{2})^2 - \dfrac{1}{4} + \dfrac{2}{3}`$ $`y = (x-\dfrac{1}{2})^2 + \dfrac{5}{12}`$ ### Qustion 4 c) When $`h = 0`$, the ball hits ground, so: $`-3.2t^2 + 12.8 + 1 = 0`$ $`t = \dfrac{-12.8 \pm \sqrt{12.8^2 - 4(3.2)}}{-6.4}`$ $`t = \dfrac{12.8 \pm \sqrt{151.04}}{6.4}`$ $`\because t \ge 0`$ $`\therefore t = \dfrac{12.8 \pm sqrt{151.04}}{6.4}`$ $`\therefore t \approx 3.9`$ The ball will strike the ground at approximately $`3.9`$ seconds. ### Question 5 a) $`128 = 96t - 16t^2`$ $`16t^2 - 96t + 128 = 0`$ $`t^2 - 6t + 8 = 0`$ $`1 \quad \quad -2`$ $`1 \quad \quad -4`$ $`(t-2)(t-4)`$, at seconds $`2`$ and $`4`$, the rocket reaches $`128m`$. ### Question 5 b) Break even is when revenue = cost. $`\therefore R(d) = C(d)`$ $`-40d^2 + 200d = 300 - 40d`$ $`40d^2 - 240d + 300 = 0`$ $`4d^2 - 24d + 30 = 0`$ $`2d^2 - 12d + 15 = 0`$ $`d = \dfrac{12 \pm \sqrt{24}}{4}`$ $`d = \dfrac{6 \pm \sqrt{6}}{2}`$ At $`d = 4.22474407$ or $`1.775255135`$ is when you break even. ### Question 5 c) Let the quation be $`y = a(x-d)^2 + c`$ Since we know that that $`(0, 0)`$ and $`(6, 0)`$ are the roots of this equation, the AOS is when $`x = 3`$ $`\therefore y = a(x-3)^2 + c`$. Since we know that $`(0, 0)`$ is a point on the parabola, we can susbsitute it into our equation. $`0 = 9a + c \quad (1)`$ Since we know that $`(4, 5)`$ is also a point on the parabola, we can susbsitute it int our equation as well. $`5 = a + c \quad (2)`$ ```math \begin{cases} 9a + c = 0 & \text{(1)} \\ a + c = 5 & \text{(2)} \\ \end{cases} ``` $`(2) - (1)`$ $`-8a = 5 \implies a = \dfrac{-5}{8} \quad (3)`$ Sub $`3`$ into $`(2)`$: $`5 = \dfrac{-5}{8} + c \implies c = \dfrac{45}{8}`$ $`\therefore`$ Our equation is $`y = \dfrac{-5}{8}(x-3)^2 + \dfrac{45}{8}`$