

Quadratic Equations.md 5.23 KB

37950727

There was an error rendering this math block

If the quadratic is in $ax^2 + bx + c$, the AOS (axis of symmetry) is at $\frac{-b}{2}$. And you can plug that value into the quadratic equation to get your optimal value, which is: 2*a* −*b*

Question 1 a)

The zeroes of a quadratic equation are the solutions of x when $ax^2+bx+c=0.$ The roots of the quadratic equation is when , more commonly described by the formula $\frac{1}{2}$, Therefore the roots of a quadratic equation are also the zeroes of the quadratic equation. x when $ax^2 + bx + c = 0.$ The roots of the quadratic equation is when $(x + r_1)(x + r_2)$ r_2) = 0, more commonly described by the formula $\frac{2a}{2a}$ $-b \pm \sqrt{b^2 - 4ac}$

Question 1 b)

$$
D=b^2-4ac
$$

If $D=0$, there is one zero.

$$
\therefore n^2-4(1)(4)=0
$$

$$
n^2-16=0
$$

 $(n+4)(n-4) = 0$

$$
n=\pm 4
$$

Question 1 c)

Let h be the height and b be the base. $h=2b+4$.

$$
\therefore (2b+4)(b) = 168(2)
$$

$$
4b^2 + 8b = 168(2)
$$

$$
b^2 + 2b = 84 = 0
$$

$$
b = \frac{-2 \pm \sqrt{4 + 4(84)}}{4}
$$

$$
b=-1+\sqrt{85}
$$

Question 2 a)

$$
= a\left(\frac{-b}{2a}\right)^2 + b\left(\frac{-b}{2a}\right) + c
$$

$$
= \frac{b^2}{4a} + \frac{-b^2}{2a} + c
$$

$$
x = \pm \sqrt{\frac{33}{16}} - \frac{5}{4}
$$

$$
x = \frac{\pm \sqrt{33}}{4} - \frac{5}{4}
$$

$$
x = \frac{\sqrt{33} - 5}{4} \text{ or } \frac{-\sqrt{33} - 5}{4}
$$

$$
x = 9 + 2w
$$

\n
$$
y = 6 + 2w
$$

\n
$$
(6 + 2w)(9 + 2w) - (6)(9 = (6)(9)
$$

\n
$$
54 + 12w + 18w + 4w^{2} = 2(54)
$$

\n
$$
4w^{2} + 30w = 54
$$

\n
$$
2w^{2} + 15w - 27 = 0
$$

\n
$$
(2w - 3)(w + 9) = 0
$$

\n
$$
w = \frac{3}{2}, -9
$$

\n∴ $w > 0$
\n∴ $w = \frac{3}{2}$
\n∴ $x = 9 + 3 = 12$
\n∴ $y = 6 + 3 = 9$
\n
$$
P = 2(x + y) \implies P = 2(12 + 9) \implies P = 42
$$

\n∴ The perimeter is 42m

Question 2 c)

Let w be the width between the path and flowerbed, x be the length of the whole rectangle and y be the whole rectangle (flowerbed + path).

$$
y = 12x^{2} - 5x - 2
$$

$$
y = (3x - 2)(4x + 1)
$$

$$
\therefore \text{ The } x \text{-intercepts are at } \frac{2}{3},
$$

AOS (axis of symmetry) =
$$
\frac{-b}{2a} = \frac{6}{2} = 3
$$

∴ 3000 rings should be made to achieve the optimal value.

Maximum profit $=-2(3)^2+12(3)-10$

 $=-18 + 30 - 10$

Question 3 a)

Use discriminant, where $D=b^2-4ac$.

Question 3 b)

4 −1

 $(k-5)(k-1)=0$

 $k = 5, 1$

Either 5000 or 1000 rings must be produced so that there is no prodift and no less.

Question 3 c)

When $P(x)=0$, that means it is the break-even point for a value of x (no profit, no loss).

$$
2k^2 + 12k - 10 = 0 \implies k^2 - 6k + 5 = 0
$$

∴ 8000 dollars is the maximum profit.

After expanding we get:

Now we complete the square.

∵ $\frac{1}{3}$ and $\frac{1}{3}$ are the roots of a quadratic equation, that must mean that $(x-\frac{1}{3})(x-\frac{1}{3})$ is a quadratic equation that gives those roots. 1 3 -2 $(x-\frac{1}{2})(x-$ 3 1) 3 2

Break even is when revenue = cost.

 $\therefore R(d) = C(d)$ $-40d^2 + 200d = 300 - 40d$ $40d^2 - 240d + 300 = 0$ $2d^2 - 12d + 15 = 0$ $d =$ 4 $12\pm\sqrt{24}$

Question 4 a)

$$
5x(x-1) + 5 = 7 + x(1 - 2x)
$$

$$
5x2 - 5x = 2 + x - 2x2
$$

$$
7x2 - 6x - 2 = 0
$$

$$
x = \frac{6 \pm \sqrt{92}}{14} = \frac{3 \pm \sqrt{23}}{7}
$$

Question 4 b).

$$
y = x^{2} - \frac{2}{3}x - \frac{1}{3}x + \frac{2}{3}
$$

$$
y = x^{2} - x + \frac{2}{3}
$$

3 2

$$
y = x2 - x + (\frac{1}{2})^{2} - (\frac{1}{2})^{2} +
$$

$$
y = (x - \frac{1}{2})^{2} - \frac{1}{4} + \frac{2}{3}
$$

$$
y = (x - \frac{1}{2})^{2} + \frac{5}{12}
$$

Qustion 4 c)

When $h=0$, the ball hits ground, so: λ

$$
-3.2t^{2} + 12.8 + 1 = 0
$$

$$
t = \frac{12.8 \pm \sqrt{151.04}}{6.4}
$$

$$
\therefore t \ge 0
$$

$$
\therefore t = \frac{12.8 \pm \sqrt{151.04}}{6.4}
$$

 $\therefore t \approx 3.9$

The ball will strike the ground at approximately 3.9 seconds.

Question 5 a)

 $128 = 96t - 16t^2$ $16t^2 - 96t + 128 = 0$

 $t^2 - 6t + 8 = 0$

 $\left(t-2\right) \! (t-4)$, at seconds 2 and 4 , the rocket reaches $128m.$

Question 5 b)

$$
\therefore y = a(x-3)^2 + c.
$$

Since we know that $(0,0)$ is a point on the parabola, we can susbsitute it into our equation.

$$
d=\frac{6\pm\sqrt{6}}{2}
$$

At $d = 4.22474407$ or 1.775255135 is when you break even.

Question 5 c)

Let the quation be $y = a(x-d)^2 + c$

Since we know that that $(0,0)$ and $(6,0)$ are the roots of this equation, the AOS is when $x=3$

$$
0=9a+c\pod{1}
$$

Since we know that $\left(4,5\right)$ is also a point on the parabola, we can susbsitute it int our equation as well.

$$
5 = \frac{-5}{8} + c \implies c = \frac{45}{8}
$$

:. Our equation is $y = \frac{-5}{8}(x - 3)^2 + \frac{45}{8}$

$$
5=a+c\pod{2}
$$

$$
\begin{cases} 9a + c = 0 & (1) \\ a + c = 5 & (2) \end{cases}
$$

 $(2) - (1)$

$$
-8a = 5 \implies a = \frac{-5}{8} \quad (3)
$$

Sub 3 into (2) :