## Analytical Geometry Part 1 ### Question 1 a) Lets first find each of the side lengths to determine if the triangle is **obtuse**, **acute** or scalene. $`\overline{AB} = \sqrt{(-1-7)^2 + (5-2)^2} = \sqrt{64 + 9} = \sqrt{73}`$ $`\overline{BC} = \sqrt{(7-(-1))^2 + (2-(-4))^2} = \sqrt{64 + 36} = \sqrt{100} = 10`$ $`\overline{AC} = \sqrt{(-1-(-1))^2 + (5-(-4))^2} = \sqrt{0^2 + 9^2} = \sqrt{81} = 9`$ $`\because \overline{AB} =\not \overline{BC} =\not \overline{AC}`$ $`\therefore \triangle ABC`$ is a scalene triangle. ### Question 1 b) The `orthocenter` is the POI of the heights of a triangle. $`m_{AB} = \dfrac{2-5}{7-(-1)} = \dfrac{-3}{8}`$ $`m_{\perp AB} = \dfrac{8}{3}`$ $`y_{\perp AB} - (-4) = \dfrac{8}{3}(x - (-1)) \implies y_{\perp AB} + 4 = \dfrac{8}{3}(x+1)`$ $`y_{\perp AB} = \dfrac{8}{3}x + \dfrac{8}{3} - 4`$ $` y_{\perp AB} = \dfrac{8}{3}x - \dfrac{4}{3} \quad (1)`$ $`m_{BC} = \dfrac{2-(-4)}{7-(-1)} = \dfrac{6}{8} = \dfrac{3}{4}`$ $`m_{\perp BC} = \dfrac{-4}{3}`$ $`y_{\perp BC} - 5 = \dfrac{-4}{3}(x-(-1)) \implies y_{\perp BC} - 5 = \dfrac{-4}{3}(x+1)`$ $`y_{\perp BC} = \dfrac{-4}{3}x - \dfrac{4}{3} + 5`$ $`y_{\perp BC} = \dfrac{-4}{3}x + \dfrac{11}{3}`$ ```math \begin{cases} y_{\perp AB} = \dfrac{8}{3}x - \dfrac{4}{3} & \text{(1)} \\ \\ y_{\perp BC} = \dfrac{-4}{3}x + \dfrac{11}{3} & \text{(2)} \\ \end{cases} ``` Sub $`(1)`$ into $`(2)`$: $`\dfrac{8}{3}x - \dfrac{4}{3} = \dfrac{-4}{3} + \dfrac{11}{3}`$ $`8x - 4 = -4x + 11`$ $`12x = 15`$ $`x = \dfrac{5}{4} \quad (3)`$ Sub $`(3)`$ into $`(2)`$ $`y = \dfrac{-20}{12} + \dfrac{11}{3}`$ $`y = \dfrac{-5}{3} + \dfrac{11}{3}`$ $`y = \dfrac{6}{3} = 2`$ $`y = 2`$ $`\therefore`$ The `orthocenter` is at $`(\dfrac{5}{4}, 2)`$ ### Question 2 a) midpoint = $` (\dfrac{\sqrt{72} + \sqrt{32}}{2}, \dfrac{-\sqrt{12} - \sqrt{48}}{2} )`$ $` = ( \dfrac{6\sqrt{2} + 4\sqrt{2}}{2}, \dfrac{-2\sqrt{3}, -4\sqrt{3}}{2}) `$ $` = 3\sqrt{2} + 2\sqrt{2}, -\sqrt{3} - 2\sqrt{3}`$ $` = (5\sqrt{2}, -3\sqrt{3})`$ $`\therefore`$ The midpoint is at $`(5 \sqrt{2}, -3\sqrt{3})`$ ### Question 2 b) Center of mass = centroid. Centroid = where all median lines of a triangle intersect. $`M_{AB} = (\dfrac{8+12}{2}, \dfrac{12+4}{2}) = (10, 8)`$ $`m_{M_{AB} C} = \dfrac{8-8}{10-2} = 0`$ $`y_{M_{AB} C} = 8 \quad (1)`$ $`M_{BC} = (\dfrac{12+2}{2}, {8+4}{2}) = (7, 6)`$ $`m_{M_{BC} A} = \dfrac{6-12}{7-8} = 6`$ $`y_{M_{BC}A} - 12 = 6(x-8)`$ $`y_{M_{BC}A} = 6x - 48 +12`$ $`y_{M_{BC}A} = 6x - 36 \quad (2)`$ ```math \begin{cases} y_{M_{BC} A} = 8 & \text{(1)} \\ y_{M_{BC} A} = 6x - 36 & \text{(2)} \\ \end{cases} ``` Sub $`(1)`$ into $`(2)`$ $`8 = 6x - 36`$ $`6x = 44`$ $`x = \dfrac{44}{6} = \dfrac{22}{3} \quad (3)`$ By $`(1)`$, $`y=8`$. $`\therefore`$ The centroid is at $`(\dfrac{22}{3}, 8)`$