**1. Solve for** $`x`$ **if** $`\dfrac{2x+3}{4} - \dfrac{3x-1}{3} = \dfrac{5x - 2}{2}`$ - $`3(2x+3) - 4(3x-1) = 6(5x-2)`$ - $`6x+9 - 12x + 4 = 30x - 12`$ - $`-6x + 13 = 30x - 12`$ - $`36x = 25`$ - $`x = \dfrac{25}{36}`$ **2. Determine the length of** $`AB`$ **for** $`\triangle ABC`$, **where** $`D`$ **is on segment** $`AC`$, and $`AD = 7, DC = 3,BC = 5`$ - $`\because 3^2 + 4^2 = 5^2 `$ - $`\therefore BD = 4`$ - $`\because \angle{ADB} = 90\degree`$ - $`\therefore BA = BD^2 + 7^2`$ - $`\therefore BA = \sqrt{4^2 + 7^2}`$ - $`BA = \sqrt{65}`$ - The length of $`AB`$ is $`\sqrt{65}`$ **3. Line 1 goes through the points** $`(-3, -7)`$ **and** $`(9, 1)`$. **Line 2 is perpendicular to** $`3x-4y+8 = 0`$ **and has a y-intercept of** $`7`$. **Determine the point of intersection of line 1 and line 2**. - $`m_1 = \dfrac{1-(-7)}{9-(-3)}`$ - $`m_1 = \dfrac{8}{12}`$ - $`m_1 = \dfrac{2}{3}`$ - $`1 = \dfrac{2}{3}(9) + b`$ - $`1 = 6 + b`$ - $`b = -5`$ - $`y_1 = \dfrac{2}{3}x - 5`$ - $`3x - 4y + 8 = 0 `$ - $`4y = 3x + 8`$ - $`y = \dfrac{3}{4}x + 2`$ - $`m_{\perp} = \dfrac{-4}{3}`$ - $`y_2 = \dfrac{-4}{3}x + 7`$ - $`\begin{cases} y = \dfrac{-4}{3}x + 7 \quad (1) \\ \\y = \dfrac{2}{3}x - 5 \quad (2) \end{cases}`$ - **sub** $`(1)`$ **into** $`(2)`$ - $`\dfrac{2}{3}x - 5 = \dfrac{-4}{3}x + 7`$ - $`\dfrac{6}{3}x = 12`$ - $`2x = 12`$ - $`x = 6 (3)`$ - **sub** $`(3)`$ **into** $`(2)`$ - $`y = \dfrac{-24}{3} + 7`$ - $`y = -8 + 7`$ - $`y = -1`$ - $`\therefore`$ the Point of Intersection is $`(6, -1)`$