# Question 1 ```math \because \angle B^\prime = \angle B \quad (\text{Corresonding Line theorem}) \\ \because \angle C^\prime = \angle C \quad (\text{Corresponding Line theorem}) \\ \therefore \triangle AB^\prime C^\prime \sim \triangle ABC \quad (\text{ AA } \sim) \\ \\ \therefore \dfrac{AB^\prime}{B^\prime C^\prime} = \dfrac{AB}{BC} \\ \quad \\ \therefore \dfrac{30}{14} = \dfrac{30+x}{22} \\ \\ \quad \\ 14(30+x) = 22(30) \\ \quad \\ x = \dfrac{22(30)}{14} - 30 \\ \quad \\ x = 17.1428571 \approx 17.14 ``` ```math \dfrac{AC^\prime}{B^\prime C^\prime} = \dfrac{AC}{BC} \\ \quad \\ \dfrac{y}{14} = \dfrac{y+15}{22} \\ \quad \\ 22y = 14y + 14(15) \\ 8y = 14(15) \\ y = 26.25 ```