## Analytical Geometry Part 2 ### Question 3 Shortest distance = straight perpendicular line that connets $`A`$ to a point on line $`\overline{GH}`$ $`M_{GH} = \dfrac{42+30}{38 + 16} = \dfrac{72}{54} = \dfrac{4}{3}`$ $`M_{\perp GH} = \dfrac{-3}{4}`$ $`y_{\perp GH} - 32 = \dfrac{-3}{4}(x+16)`$ $`y_{\perp GH} = \dfrac{-3}{4}x + 20 \quad (1)`$ $`y_{GH} + 30 = \dfrac{4}{3}(x+16)`$ $`y_{GH} = \dfrac{4}{3}x - \dfrac{26}{3} \quad (2)`$ ```math \begin{cases} y_{\perp GH} = \dfrac{-3}{4}x + 20 & \text{(1)} \\ \\ y_{GH} = \dfrac{4}{3}x - \dfrac{26}{3} & \text{(2}) \\ \end{cases} ``` Sub $`(1)`$ into $`(2)`$ $`\dfrac{-3}{4}x + 20 = \dfrac{4}{3}x - \dfrac{26}{3}`$ $`-9x + (12)20 = 16x - 4(26)`$ $`25x = 344`$ $`x = \dfrac{344}{25} \quad (3)`$ Sub $`(3)`$ into $`(1)`$ $`y = \dfrac{-3}{4}(\dfrac{344}{25}) + 20`$ $`y = \dfrac{-258}{25} + 20`$ $`y = \dfrac{-258}{25} + \dfrac{500}{25}`$ $`y = \dfrac{242}{25}`$ Distance $`= \sqrt{(-16-\dfrac{344}{25})^2 + (32 - \dfrac{242}{25})^2} = 37.2`$ $`\therefore`$ The shortest length pipe is $`37.2`$ units. ### Question 4 Let $`(x, y)`$ be the center of the circle, and $`r`$ be the radius of the circle. ```math \begin{cases} (x-4)^2 + (y-8)^2 = r^2 & \text{(1)} \\ (x-5)^2 + (y-1)^2 = r^2 & \text{(2)} \\ (x+2)^2 + y^2 = r^2 & \text{(3)} \\ \end{cases} ``` Sub $`(1)`$ into $`(2)`$ $`x^2 - 8x + 16 + y^2 - 16y + 64 = x^2 - 10x + 25 + y^2 -2y + 1`$ $`-8x -16y + 80 = -10x - 2y + 26`$ $`2x - 14y = -54`$ $`x - 7y = -27 \quad (4)`$ Sub $`(2)`$ into $`(3)`$ $`x^2 - 10x + 25 + y^2 - 2y + 1 = x^2 + 4x + 4 + y^2`$ $`-10x - 2y +26 = 4x + 4`$ $`14x + 2y = 22`$ $`7x + y = 11`$ $`y = 11 - 7x \quad (5)`$ Sub $`(5)`$ into $`(4)`$ $`x - 7(11-7x) = -27`$ $`x - 77+ 49x = 27`$ $`50x = 50`$ $`x = 1 \quad (6)`$ Sub $`(6)`$ into $`(5)`$ $`y = 11 - 7(1)`$ $`y = 4 \quad (7)`$ Sub $`(6), (7)`$ into $`(3)`$ $`(1+2)^2 + 4^2 = r^2`$ $`r^2 = 16 + 9`$ $`r^2 = 25`$ $`\therefore (x-1)^2 + (y-4)^2 = 25`$ is the equation of the circle.