# Question 1 ```math \because \angle B^\prime = \angle B \quad (\text{Corresonding Line theorem}) \\ \because \angle C^\prime = \angle C \quad (\text{Corresponding Line theorem}) \\ \therefore \triangle AB^\prime C^\prime \sim \triangle ABC \quad (\text{ AA } \sim) \\ \\ \therefore \dfrac{AB^\prime}{B^\prime C^\prime} = \dfrac{AB}{BC} \\ \quad \\ \therefore \dfrac{30}{14} = \dfrac{30+x}{22} \\ \\ \quad \\ 14(30+x) = 22(30) \\ \quad \\ x = \dfrac{22(30)}{14} - 30 \\ \quad \\ x = 17.1428571 \approx 17.14 ``` ```math \dfrac{AC^\prime}{B^\prime C^\prime} = \dfrac{AC}{BC} \\ \quad \\ \dfrac{y}{14} = \dfrac{y+15}{22} \\ \quad \\ 22y = 14y + 14(15) \\ 8y = 14(15) \\ y = 26.25 ``` # Question 2 ```math h = b \sin A \\ h = 11.3 \sin 32 \\ h = 5.99 \\ \because h \le 6.8 \le 11.3 \\ \therefore 2 \triangle 's \text{ exist} \\ \text{ Lets call point } T \text{ is the height that is perpendicular on side } AB \text{ and connects to point } C. \text { and } B^\prime \text{ be the other possible point of } B. ``` ------------------------- $`\text{ Case } 1:`$ $`\angle CB^\prime T = \sin^{-1} \Bigl(\dfrac{5.99}{6.8} \Bigr)`$ $`\angle CB^\prime T = 61.75^o`$ $`\angle AB^\prime C = 180 - 61.75 = 118.25^o (\text{ Complentary Angle Theorem})`$ $`\angle ACB^\prime = 180 - 61.75 - 32 = 86.25^o (\text{ASTT})`$ $`\dfrac{AB}{\sin \angle ACB^\prime} = \dfrac{CB^\prime}{\sin A}`$ $`\dfrac{AB}{\sin86.25} = \dfrac{6.8}{\sin 32}`$ $`AB = \dfrac{\sin 86.25 \times 6.8}{\sin32}`$ $`AB = 12.8`$ ------------------------- $`\text{ Case} 2: `$ $`\angle ABC = 61.75`$ $`\angle ACB = 180 - 32 - 61.75 = 86.25^o (\text{ ASTT})`$ $`\dfrac{AB}{\sin C} = \dfrac{CB}{\sin A}`$ $`\dfrac{AB}{\sin 86.25} = \dfrac{6.8}{\sin 32}`$ $`AB =