forked from eggy/eifueo
ece105: add angular momentum and torque
This commit is contained in:
parent
6ba4ef1294
commit
08191a395a
@ -91,7 +91,7 @@ $$I=\int^M_0 R^2 dm$$
|
|||||||
- Hoop about diameter: $I=\frac{1}{2}MR^2$
|
- Hoop about diameter: $I=\frac{1}{2}MR^2$
|
||||||
- Rod about center: $I=\frac{1}{12}ML^2$
|
- Rod about center: $I=\frac{1}{12}ML^2$
|
||||||
- Rod about end: $I=\frac{1}{3}ML^2$
|
- Rod about end: $I=\frac{1}{3}ML^2$
|
||||||
- Square slab about perpendicular axis through center: $I=\frac{1}{3}ML^2$
|
- Thin rectangular plate about perpendicular axis through center: $I=\frac{1}{3}ML^2$
|
||||||
|
|
||||||
### Rotational-translational equivalence
|
### Rotational-translational equivalence
|
||||||
|
|
||||||
@ -107,7 +107,7 @@ Angular velocity is related to velocity:
|
|||||||
|
|
||||||
$$\omega = \frac{v}{r}$$
|
$$\omega = \frac{v}{r}$$
|
||||||
|
|
||||||
The direction of the tangential values can be determined via the right hand rule.
|
The direction of the tangential values can be determined via the right hand rule. Where $r$ is the vector from the **origin to the mass**:
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\vec v = r\times\omega \\
|
\vec v = r\times\omega \\
|
||||||
@ -124,3 +124,32 @@ And all kinematic equations have their rotational equivalents.
|
|||||||
Most translational equations also have rotational equivalents.
|
Most translational equations also have rotational equivalents.
|
||||||
|
|
||||||
$$E_\text{k rot} = \frac{1}{2}I\omega^2$$
|
$$E_\text{k rot} = \frac{1}{2}I\omega^2$$
|
||||||
|
|
||||||
|
## Torque
|
||||||
|
|
||||||
|
Torque is the rotational equivalent of force.
|
||||||
|
|
||||||
|
$$\vec\tau=I\vec\alpha$$
|
||||||
|
$$\vec\tau=\vec r\times\vec F$$
|
||||||
|
$$|\vec\tau=|r||F|\sin\theta$$
|
||||||
|
|
||||||
|
In the general case, especially when the force is variable, the work done is equal to the integral of force over displacement.
|
||||||
|
|
||||||
|
$$W=\int^{x_f}_{x_i}F_xdx$$
|
||||||
|
|
||||||
|
Work is also related to torque:
|
||||||
|
|
||||||
|
$$W=\tau\Delta\theta$$
|
||||||
|
$$W=F\Delta S$$
|
||||||
|
|
||||||
|
The total net work from torque from external forces is equivalent to:
|
||||||
|
|
||||||
|
$$W=\Delta E_k = \int^{\theta_f}_{\theta_i}\taud\theta$$
|
||||||
|
|
||||||
|
### Angular momentum
|
||||||
|
|
||||||
|
This is the same as linear momentum.
|
||||||
|
|
||||||
|
$$\vec L = \vec r\times\vec p$$
|
||||||
|
$$\vec L = I\vec\omega$$
|
||||||
|
$$\vec L =\vec\tau t$$
|
||||||
|
Loading…
Reference in New Issue
Block a user