forked from eggy/eifueo
math119: add related rates and differentials
This commit is contained in:
parent
9c0f2cd302
commit
0adf85e83c
@ -165,3 +165,54 @@ $$f(x)\simeq L(x)$$
|
|||||||
L(x=1.03, y=0.98)=f(1,1)=f_x(1,1)(x-1)+f_y(1,1)(y-1) \\
|
L(x=1.03, y=0.98)=f(1,1)=f_x(1,1)(x-1)+f_y(1,1)(y-1) \\
|
||||||
f(1.03,0.98)\simeq L(1.03,0.98)=0.005
|
f(1.03,0.98)\simeq L(1.03,0.98)=0.005
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
### Differentials
|
||||||
|
|
||||||
|
Linear approximations can be used with the help of differentials. Please see [MATH 117#Differentials](/1a/math117/#differentials) for more information.
|
||||||
|
|
||||||
|
$\Delta f$ can be assumed to be equivalent to $df$.
|
||||||
|
|
||||||
|
$$\Delta f=f_x(a,b)\Delta x+f_y(a,b)\Delta y$$
|
||||||
|
|
||||||
|
Alternatively, it can be expanded in Leibniz notation in the form of a **total differential**:
|
||||||
|
|
||||||
|
$$df=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy$$
|
||||||
|
|
||||||
|
??? tip "Proof"
|
||||||
|
The general formula for a plane in three dimensions can be expressed as a tangent plane if the differential is small enough:
|
||||||
|
|
||||||
|
$$f(x,y)=f(a,b)+f_x(a,b)(x-a)+f_y(a,b)(x-b)$$
|
||||||
|
|
||||||
|
As $\Delta f=f(x,y)-f(a,b)$, $\Delta x=x-a$, and $\Delta y=y-b$, it can be assumed that $\Delta x=dx,\Delta y=dy, \Delta f\simeq df$.
|
||||||
|
|
||||||
|
$$\boxed{\Delta f\simeq df=f_x(a,b)dx+f_y(a,b)dy}$$
|
||||||
|
|
||||||
|
### Related rates
|
||||||
|
|
||||||
|
Please see [SL Math - Analysis and Approaches 1](/g11/mhf4u7/#related-rates) for more information.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
For the gas law $pV=nRT$, if $T$ increases by 1% and $V$ increases by 3%:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
pV&=nRT \\
|
||||||
|
\ln p&=\ln nR + \ln T - \ln V \\
|
||||||
|
\tag{multiply both sides by $d$}\frac{d}{dp}\ln p(dp)&=0 + \frac{d}{dT}\ln T(dt)-\frac{d}{dV}\ln V(dV) \\
|
||||||
|
\frac{dp}{p} &=\frac{dT}{T}-\frac{dV}{V} \\
|
||||||
|
&=0.01-0.03 \\
|
||||||
|
&=-2\%
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
### Parametric curves
|
||||||
|
|
||||||
|
Because of the existence of the parameter $t$, these expressions have some advantages over scalar equations:
|
||||||
|
|
||||||
|
- the direction of $x$ and $y$ can be determined as $t$ increases, and
|
||||||
|
- the rate of change of $x$ and $y$ relative to $t$ as well as each other is clearer
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
f(x,y,z)&=\begin{bmatrix}x(t) \\ y(t) \\ z(t)\end{bmatrix} \\
|
||||||
|
&=(x(t), y(t), z(t))
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
Loading…
Reference in New Issue
Block a user