From 142c8407673d643fa4b85a5d49db06edcccace3b Mon Sep 17 00:00:00 2001 From: eggy Date: Mon, 7 Dec 2020 22:23:12 -0500 Subject: [PATCH] math: add basic trig identities --- docs/mhf4u7.md | 30 ++++++++++++++++++++++++++++++ 1 file changed, 30 insertions(+) diff --git a/docs/mhf4u7.md b/docs/mhf4u7.md index 5778e31..8e8868d 100644 --- a/docs/mhf4u7.md +++ b/docs/mhf4u7.md @@ -2,6 +2,36 @@ The course code for this page is **MHF4U7**. +## 3 - Geometry and trigonometry + +To find the result of a primary trig ratio, the related acute angle (RAA) should first be found before referring to the CAST rule to determine quadrants before identifying all correct answers in the domain. + +### Circles + +The equation below is true for every point on a circle with radius $r$. +$$x^2+y^2=r^2$$ + +The area of a **sector** requires knowledge of the radius and angle in **radians** that the sector encompasses. +$$A=\frac{r^2\theta}{2}$$ +(Source: Kognity) + +### Trigonometric identities + +The **Pythagorean identity** relates the radius of a circle to its x and y components. +$$\sin^2\theta+\cos^2\theta=\tan^2\theta$$ + +The **quotient identity** relates the side lengths of a right-angled triangle. +$$\tan\theta=\frac{\sin\theta}{\cos\theta}$$ + +The **double angle identities** can be used to convert one trig ratio to another. +$$ +\sin 2\theta = 2\sin\theta\cos\theta \\ +\cos 2\theta = 2\cos^2\theta-1 \\ +\cos 2\theta = \cos^2\theta-\sin^2\theta \\ +\cos 2\theta = 1-2\sin^2\theta \\ +\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta} +$$ + ## 4 - Statistics and probability !!! note "Definition"