forked from eggy/eifueo
math119: add multivar derivs
This commit is contained in:
parent
778bb1efdf
commit
188a1ddb3d
@ -64,3 +64,47 @@ In practice, this means that if any two paths result in different limits, the li
|
|||||||
|
|
||||||
Therefore the limit does not exist.
|
Therefore the limit does not exist.
|
||||||
|
|
||||||
|
## Partial derivatives
|
||||||
|
|
||||||
|
Partial derivatives have multiple different symbols that all mean the same thing:
|
||||||
|
|
||||||
|
$$\frac{\partial f}{\partial x}=\partial_x f=f_x$$
|
||||||
|
|
||||||
|
For two-input-variable equations, setting one of the input variables to a constant will return the derivative of the slice at that constant.
|
||||||
|
|
||||||
|
By definition, the **partial** derivative of $f$ with respect to $x$ (in the x-direction) at point $(a, B)$ is:
|
||||||
|
|
||||||
|
$$\frac{\partial f}{\partial x}(a, B)=\lim_{h\to 0}\frac{f(a+h, B)-f(a, B)}{h}$$
|
||||||
|
|
||||||
|
Effectively:
|
||||||
|
|
||||||
|
- if finding $f_x$, $y$ should be treated as constant.
|
||||||
|
- if finding $f_y$, $x$ should be treated as constant.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
With the function $f(x,y)=x^2\sqrt{y}+\cos\pi y$:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
f_x(1,1)&=\lim_{h\to 0}\frac{f(1+h,1)-f(1,1)} h \\
|
||||||
|
\tag*{$f(1,1)=1+\cos\pi=0$}&=\lim_{h\to 0}\frac{(1+h)^2-1} h \\
|
||||||
|
&=\lim_{h\to 0}\frac{h^2+2h} h \\
|
||||||
|
&= 2 \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
### Higher order derivatives
|
||||||
|
|
||||||
|
!!! definition
|
||||||
|
- **wrt.** is short for "with respect to".
|
||||||
|
|
||||||
|
$$\frac{\partial^2f}{\partial x^2}=\partial_{xx}f=f_{xx}$$
|
||||||
|
|
||||||
|
Derivatives of different variables can be combined:
|
||||||
|
|
||||||
|
$$f_{xy}=\frac{\partial}{\partial y}\frac{\partial f}{\partial x}=\frac{\partial^2 f}{\partial xy}$$
|
||||||
|
|
||||||
|
The order of the variables matter: $f_{xy}$ is the derivative of f wrt. x *and then* wrt. y.
|
||||||
|
|
||||||
|
**Clairaut's theorem** states that if $f_x, f_y$, and $f_{xy}$ all exist near $(a, b)$ and $f_{yx}$ is continuous **at** $(a,b)$, $f_{yx}(a,b)=f_{x,y}(a,b)$ and exists.
|
||||||
|
|
||||||
|
!!! warning
|
||||||
|
In multivariable calculus, **differentiability does not imply continuity**.
|
||||||
|
Loading…
Reference in New Issue
Block a user