forked from eggy/eifueo
math119: start triple integrals
This commit is contained in:
parent
c7b3f211ea
commit
219377b4e6
@ -561,3 +561,31 @@ $$\iint_R f(x,y)dA$$
|
|||||||
&=\frac 2 3u^{3/2}du\biggr|^1_0 \\
|
&=\frac 2 3u^{3/2}du\biggr|^1_0 \\
|
||||||
&=\frac 2 3\pi
|
&=\frac 2 3\pi
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
|
## Triple integration
|
||||||
|
|
||||||
|
Much like double integrals:
|
||||||
|
|
||||||
|
The **volume** within bounds $E$ is the integral of 1:
|
||||||
|
|
||||||
|
$$V=\iiint_E1dV$$
|
||||||
|
|
||||||
|
The **average value** within a volume is:
|
||||||
|
|
||||||
|
$$\overline f_E=\frac 1 V\iiint_Ef(x,y,z)dV$$
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
For the volume within $x+y+z=1$ and $2x+2y+z=2,x,y,z\geq 0$:
|
||||||
|
|
||||||
|
The points intersect the axes and each other to create the bounds $0\leq x\leq 1,0\leq y\leq 1-x,1-x-y\leq z\leq 2-2x-2y$.
|
||||||
|
|
||||||
|
$$\int^1_0\int^{1-x}_0\int^{2-2x-2y}_{1-x-y}1dz\ dy\ dx =\frac 1 6$$
|
||||||
|
|
||||||
|
The average value is:
|
||||||
|
|
||||||
|
$$6\iiint_Ez\ dV=\frac 3 4$$
|
||||||
|
|
||||||
|
The **total quantity** if $f$ represents density is:
|
||||||
|
|
||||||
|
$$T=\iiint_Ef(x,y,z)dV$$
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user