From 2b88e631ee192495d15ddde380811c20878d0e5c Mon Sep 17 00:00:00 2001 From: eggy Date: Tue, 11 Oct 2022 21:33:14 -0400 Subject: [PATCH] math117: add inverse trig --- docs/ce1/math117.md | 54 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 54 insertions(+) diff --git a/docs/ce1/math117.md b/docs/ce1/math117.md index 796bc8e..7c81987 100644 --- a/docs/ce1/math117.md +++ b/docs/ce1/math117.md @@ -251,3 +251,57 @@ $$ \sin^2\theta = \frac{1}{2}(1-\cos2\theta) $$ +### Inverse trig functions + +Because extending the domain does not pass the horizontal line test, for engineering purposes, inverse sine is only the inverse of sine so long as the angle is within $[-\frac{\pi}{2}, \frac{\pi}{2}]$. Otherwise, it is equal to that version mod 2 pi. + +$$y=\sin^{-1}x \iff x=\sin y, y\in [-\frac{\pi}{2}, \frac{\pi}{2}]$$ + +This means that $x\in[-1, 1]$. + +$$ +\sin(\sin^{-1}x) = x \\ +\sin^{-1}(\sin x) = x \text{ only if } x\in[-\frac{\pi}{2}, \frac{\pi}{2}] +$$ + +Similarly, inverse **cosine** only returns values within $[0,\pi]$. + +Similarly, inverse **tangent** only returns values within $(-\frac{\pi}{2}, \frac{\pi}{2})$. However, $\tan^{-1}$ is defined for all $x\in\mathbb R$. + +Although most of the reciprocal function rules can be derived, secant is only valid in the odd range $[-\pi, -\frac{\pi}{2})\cup [0, \frac{\pi}{2})$, and returns values $(-\infty, -1]\cup [1, \infty)$. + +### Electrical signals + +Waves are commonly presented in the following format, where $A$ is a **positive** amplitude: + +$$g(t)=A\sin(\omega t + \alpha)$$ + +In general, if given a sum of a sine and cosine: + +$$a\sin\omega t + b\cos\omega t = \sqrt{a^2 + b^2}\sin(\omega t + \alpha)$$ + +The sign of $\alpha$ should be determined via its quadrant via the signs of $a$ (sine) and $b$ (cosine) via the CAST rule. + +!!! example + Given $y=5\cos 2t - 3\sin 2t$: + + $$ + \begin{align*} + A\sin (2t+\alpha) &= A\sin 2t\cos\alpha + A\cos 2t\sin\alpha \\ + &= (A\cos\alpha)\sin 2t + (A\sin\alpha)\cos 2t \\ + \\ + \begin{cases} + A\sin\alpha = 5 \\ + A\cos\alpha = -3 + \end{cases} + \\ + \\ + A^2\sin^2\alpha + A^2\cos^2\alpha &= 5^2 + (-3)^2 \\ + A^2 &= 34 \\ + A &= \sqrt{34} \\ + \\ + \alpha &= \tan^{-1}\frac{5}{3} \\ + &\text{since sine is positive and cosine is negative, the angle is in Q3} \\ + ∴ \alpha &= \tan^{-1}\frac{5}{3} + \pi + \end{align*} + $$