From 2dec44284bbd4f23be431b439e1d698c2c761770 Mon Sep 17 00:00:00 2001 From: eggy Date: Thu, 2 Feb 2023 18:16:31 -0500 Subject: [PATCH] ece108: add injective/surjective --- docs/1b/ece108.md | 28 ++++++++++++++++++++++++++++ 1 file changed, 28 insertions(+) diff --git a/docs/1b/ece108.md b/docs/1b/ece108.md index 1b2dc58..a2b5e45 100644 --- a/docs/1b/ece108.md +++ b/docs/1b/ece108.md @@ -516,3 +516,31 @@ $$\text{preimage}(f)=\{x\in X|\exists y\in B,y=f(x)\}$$ The **image** is the subset of the codomain that is mapped by a specific subset $A$ of the domain. $$\text{image}(f)=\{f(x)|\exists x\in A\}$$ + +!!! example + For the function $f: \mathbb R^+_0\to \mathbb R$ defined by $x\longmapsto x^2$: + + - the domain is $\mathbb R^+_0$ + - the codomain is $\mathbb R$ + - the range is $\mathbb R^+_0$ + - the preimage for $\{1\}$ is $\{1,-1\}$ + - the image for $0$ is $\{0\}$ + +Two functions $f=g$ are equal if and only if: + +- their domains are equal +- their codomains are equal +- $f(x)=g(x)$ for all $x\in \text{dom}(f)$ + +### Function types + +An **injective function**, **injection**, or **one-to-one function** is a function that maps only one $y$-value to each $x$. + +$$\forall x_1,x_2\in\text{dom}(f), \text{ if } f(x_1)=f(x_2),x_1=x_2$$ + +A **surjective function**, **surjection**, or **onto** is a function that has its codomain equal to its range. + +$$ +\forall y\in\text{cod}(f),\exists x\in\text{dom}(f), f(x)=y \\ +\text{rang}(f)=\text{cod}(f) +$$