From 3674ecb909f01b55f9aabbb89a11c1a1fdf8cb44 Mon Sep 17 00:00:00 2001 From: eggy Date: Wed, 29 Mar 2023 18:28:08 -0400 Subject: [PATCH] ece140: add steady state analysis --- docs/1b/ece140.md | 157 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 157 insertions(+) diff --git a/docs/1b/ece140.md b/docs/1b/ece140.md index 22edb5e..0b122b2 100644 --- a/docs/1b/ece140.md +++ b/docs/1b/ece140.md @@ -297,3 +297,160 @@ $$i=\frac 1 L\int^t_{t_0}v(t)dt + i(t_0)$$ Much like capacitors, inductors have energy now based on current. $$U=\frac 1 2 Li^2$$ + +## First-order circuits + +!!! definition + - An **RC** circuit contains a resistor and a capacitor. + - An **RL** circuit contains a resistor and an inductor. + - **First-order circuits** contain derivatives. + - A **source-free circuit** assumes that energy already exists in the capacitor/inductor and no external energy enters the system. + - The **circuit response** is the behaviour of the circuit after excitation. + - The **natural response** is the behaviour of the circuit without external excitation. + +The **time constant** $\tau$ is the time requirement for the circuit to decay to $\frac 1 e$ of its initial value. For RC circuits: + +$$\tau=RC$$ + +$$v(t)=v_0e^{-t/\tau}$$ + +RL circuits have very similar formulae: + +$$\tau=\frac L R$$ + +$$i(t)=i_0e^{-t/\tau}$$ + +### Singularity functions + +The **unit step function** is a stair that is undefined at zero. + +$$ +u(t)=\begin{cases} +0 & \text{if }t<0 \\ +1 & \text{if }t>0 +$$ + +The **unit impulse/delta function** is the derivative of the unit step function. + +$$ +\delta(t)=\frac{d}{dt}u(t)=\begin{cases} +0 & \text{if }t<0 \\ +\text{undefined} & \text{if }t=0 \\ +0 & \text{if }t>0 +$$ + +The sudden spike at $t=0$ means that $\int^{0+}_{0-}\delta(t)dt=1$. + +This function is related to signal strength. For the function $a\delta(t+y)$, changing $y$ shifts the phase while shifting $a$ shifts amplitude. + +To obtain $f(t)$ at the impulse: + +$$\int^b_a\delta(t-t_0)dt=f(t_0$$ + + +The **unit ramp function** is the integral of the unit step function. + + +\begin{align*} +r(t)&=\int^1_{-\infty}u(\lambda)d\lambda=tu(t) \\ +&=\begin{cases} +0 & \text{if }t\leq 0 \\ +t & \text{if }t\geq 0 +\end{cases} +\end{align*} + +## Circuit responses + +The total response to a circuit $V$ can be expressed as various combinations of: + +- the natural response, $v_n=v_0e^{-t/\tau}$ +- the forced response (induced) $v_f=v_s(1-e^{-t\tau})$ +- the temporary response, $(v_0-v_s)e^{-1/t}$ +- the permanent/steady-state response, $v_s$ + +$$ +v(t)=\begin{cases} +v_0 & \text{if }t<0 \\ +v_s+(v_0-v_s)e^{-t/\tau} &\text{if }t>0 +\end{cases} +$$ + +In general, for current and voltage ($x$), where $x_\infty$ is the final value and $x_0$ is the initial value: + +$$\boxed{x(t)=x(\infty)+[x(0)-x(\infty)]^{-t/\tau}}$$ + +A delayed response by $t_0$ shifts $t$ to $t-t_0$ and $x(0)$ to $x(t_0)$. + +## Alternating current + +Where $V_m$ is the amplitude of the voltage and $\omega$ is its angular frequency: + +$$v(t)=V_m\sin(\omega t)$$ + +For a sinusoid's period $T$, a circuit is period if and only if, for all $n\in\mathbb Z$: + +$$v(t)=v(t+nT)$$ + +### Phasors + +The **phasor** is the complex number vector version of the sinusoid in the time domain. + +$$v(t)=\text{Re}(\bold Ve^{j\omega t})$$ + +Please see [MATH 115: Linear Algebra#Geometry](/1a/math115/#geometry) for more information. + +$$\bold V=V_m^{j\phi}$$ + +To transform time domains to frequency domains: + +| Sinusoidal | Phasor | +| --- | --- | +| $V_m\cos(\omega t+\phi)$ | $V_m\angle\phi$ | +| $V_m\sin(\omega t+\phi)$ | $V_m\angle\phi-90^\circ$ | + +The **derivative** of a phasor is itself multiplied by $j\omega$. + +$$\frac{d}{dt}\bold V=j\omega\bold V$$ + +Adding sinusoids of the **same frequency** ($\omega$) is equivalent to adding their phasors. + +If $\bold V$ and $\bold I$ are phasors: + +- Inductors: $\bold V=j\omega L\bold I$ ($\bold I$ lags $\bold V$ by 90°) +- Capacitors: $\bold V=\frac{I}{j\omega C}$ ($\bold V$ lags $\bold I$ by 90°) + +The **scalar** quantity of **impedance** represents the opposition to electron flow, measured in ohms. + +$$Z=\frac{1}{j\omega C}=j\omega L$$ + +It is effectively generalised resistance. Where $X$ is a positive value representing **reactance** such that $+jX$ implies inductance while $-jX$ implies capacitance: + +$$Z=\frac{\bold V}{\bold I}=R\pm jX$$ + +**Admittance** is the inverse of impedance with units Siemens/mhos with factors **conductance** and **susceptance**: + +$$Y=G+jB$$ + +Arranging equations yields + +$$ +G=\frac{R}{R^2+X^2} \\ +B=-\frac{X}{R^2+X^2} +$$ + +### Steady state analysis + +**Kirchoff's laws** only hold for phasor forms. + +1. Convert to phasor forms +2. Solve phasor forms +3. Convert back to time domain + +Superposition must be summed at the end only, although individual components can first be solved. + +1. Convert to phasor forms +2. Solve each individual current/voltage that make KCL/KVL +3. Convert to time domain +4. Apply KCL/KVL + +