forked from eggy/eifueo
ece105: add rolling motion
This commit is contained in:
parent
89328dcc56
commit
45f135f955
@ -153,3 +153,44 @@ This is the same as linear momentum.
|
|||||||
$$\vec L = \vec r\times\vec p$$
|
$$\vec L = \vec r\times\vec p$$
|
||||||
$$\vec L = I\vec\omega$$
|
$$\vec L = I\vec\omega$$
|
||||||
$$\vec L =\vec\tau t$$
|
$$\vec L =\vec\tau t$$
|
||||||
|
|
||||||
|
## Rolling motion
|
||||||
|
|
||||||
|
!!! definition
|
||||||
|
- **Slipping** is spinning without sliding.
|
||||||
|
- **Skidding** is sliding without spinning.
|
||||||
|
|
||||||
|
Pure rolling motion is **only true if** the tangential velocity of the centre of mass is equal to its rotational velocity.
|
||||||
|
|
||||||
|
$$v_{cm}=R\omega$$
|
||||||
|
|
||||||
|
In pure rolling motion, the point at the top is moving at two times the velocity while the point at the bottom has no tangential velocity.
|
||||||
|
|
||||||
|
<img src="https://upload.wikimedia.org/wikipedia/commons/8/8d/Velocitats_Roda.svg" width=500>(Source: Wikimedia Commons)</img>
|
||||||
|
|
||||||
|
For any point in the mass:
|
||||||
|
|
||||||
|
$$
|
||||||
|
v_{net} = v_{trans} + v_{rot} \\
|
||||||
|
v_{net} = v_{cm} + \vec R \times\vec\omega \\
|
||||||
|
E_{k roll} = E_{k trans} + E_{k rot}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Alternatively, the rolling can be considered as a rotation about the pivot point between the disk and the ground, allowing rolling motion to be represented as rotational motion around the pivot point. The **parallel axis theorem** can be used to return it back to the original point.
|
||||||
|
|
||||||
|
$$\sum\tau_b=I_b\alpha$$
|
||||||
|
|
||||||
|
At least one external torque and one external force is required to initiate pure rolling motion because the two components are separate.
|
||||||
|
|
||||||
|
If an object is purely rolling and then it moves to:
|
||||||
|
|
||||||
|
- a flat, frictionless surface, it continues purely rolling
|
||||||
|
- an inclined, frictionless surface, external torque is needed to maintain pure rolling motion
|
||||||
|
- an inclined surface with friction, it continues purely rolling
|
||||||
|
|
||||||
|
Where $c$ is the coefficient to the moment of inertia ($I=cMR^2$), while rolling down an incline:
|
||||||
|
|
||||||
|
$$
|
||||||
|
v_{cm} = \sqrt{\frac{2}{1+c}gh} \\
|
||||||
|
a_{cm} = \frac{g\sin\theta}{1+c}
|
||||||
|
$$
|
||||||
|
Loading…
Reference in New Issue
Block a user