forked from eggy/eifueo
math119: add chain rule
This commit is contained in:
parent
8ae060e46f
commit
4676b0ff25
@ -216,3 +216,31 @@ f(x,y,z)&=\begin{bmatrix}x(t) \\ y(t) \\ z(t)\end{bmatrix} \\
|
|||||||
&=(x(t), y(t), z(t))
|
&=(x(t), y(t), z(t))
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
The **derivative** of a parametric function is equal to the vector sum of the derivative of its components:
|
||||||
|
|
||||||
|
$$\frac{df}{dt}=\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2+\left(\frac{dz}{dt}\right)^2}$$
|
||||||
|
|
||||||
|
Sometimes, the **chain rule for multivariable functions** creates a new branch in a tree for each independent variable.
|
||||||
|
|
||||||
|
For two-variable functions, if $z=f(x,y)$:
|
||||||
|
|
||||||
|
$$\frac{dz}{dt}=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y}\frac{dy}{dt}$$
|
||||||
|
|
||||||
|
Sample tree diagram:
|
||||||
|
|
||||||
|
<img src="/resources/images/two-var-tree.jpg" width=300>(Source: LibreTexts)</img>
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
This can be extended for multiple functions — for the function $z=f(x,y)$, where $x=g(u,v)$ and $y=h(u,v)$:
|
||||||
|
|
||||||
|
<img src="/resources/images/many-var-tree.jpg" width=300>(Source: LibreTexts)</img>
|
||||||
|
|
||||||
|
Determining the partial derivatives with respect to $u$ or $v$ can be done by only following the branches that end with those terms.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial u} \\
|
||||||
|
$$
|
||||||
|
|
||||||
|
!!! warning
|
||||||
|
If the function only depends on one variable, $\frac{d}{dx}$ is used. Multivariable functions must use $\frac{\partial}{\partial x}$ to treat the other variables as constant.
|
||||||
|
Loading…
Reference in New Issue
Block a user