forked from eggy/eifueo
ece124: add vhdl, maxterm minterms
This commit is contained in:
parent
5eb26c161c
commit
4b7740c55f
@ -68,3 +68,97 @@ Please see [ECE 108: Discrete Math 1#Operator laws](/1b/ece108/#operator-laws) f
|
|||||||
The **synthesis** of an algebraic formula represents its implementation via logic gates. In this course, its total cost is the sum of all inputs to all gates and the number of gates, *excluding* initial inputs of "true" or an initial negation.
|
The **synthesis** of an algebraic formula represents its implementation via logic gates. In this course, its total cost is the sum of all inputs to all gates and the number of gates, *excluding* initial inputs of "true" or an initial negation.
|
||||||
|
|
||||||
In order to deduce an algebraic expression from a truth table, **OR** all of the rows in which the function returns true and simplify.
|
In order to deduce an algebraic expression from a truth table, **OR** all of the rows in which the function returns true and simplify.
|
||||||
|
|
||||||
|
??? example
|
||||||
|
Prove that $(x+y)\cdot(x+y')=x$:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\tag{distributive property}(x+y)\cdot(x+y')&=xx+xy'+yx+yy' \\
|
||||||
|
\tag{$yy'$ = 0, $xx=x$}&=x + xy' + yx \\
|
||||||
|
\tag{distributive, commutative properties}&= x(1+y'+y) \\
|
||||||
|
\tag{1 + ... = 1}&= x(1) \\
|
||||||
|
&=x
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Prove that $xy+yz+x'z=xy+x'z$:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\tag{$x+x'=1$}xy+yz+x'z&=xy+yz(x+x')+x'z \\
|
||||||
|
\tag{distributive property}&=xy+xyz+x'yz+x'z \\
|
||||||
|
\tag{distributive property}&=x(y+yz) + x'(yz+z) \\
|
||||||
|
\tag{distributive property}&=xy(1+z) + x'z(y+1) \\
|
||||||
|
\tag{$1+k=1$}&=xy(1) + x'z(1) \\
|
||||||
|
\tag{$1\cdot k=k$}&= xy+x'z
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
### Minterms and maxterms
|
||||||
|
|
||||||
|
The **minterm** $m$ is a **product** term where all variables in the function appear once. There are $2^n$ minterms for each function, where $n$ is the number of input variables.
|
||||||
|
|
||||||
|
To determine the relevant function, the subscript can be converted to binary and each function variable set such that:
|
||||||
|
|
||||||
|
- if the digit is $1$, the complement is used, and
|
||||||
|
- if the digit is $0$, the original is used.
|
||||||
|
|
||||||
|
$$m_j=x_1+x_2+\dots x_n$$
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
For a function that accepts three variables:
|
||||||
|
|
||||||
|
- there are eight minterms, from $m_0$ to $m_7$.
|
||||||
|
- the sixth minterm $m_6=xyz'$ because $6=0b110$.
|
||||||
|
|
||||||
|
For a sample function defined by the following minterms:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
f(x_1,x_2,x_3)&=\sum m(1,2,5) \\
|
||||||
|
&=m_1+m_2+m_5 \\
|
||||||
|
&=x_1x_2x_3' + x_1x_2'x_3 + x_1'x_2x_3'
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
The **maxterm** $M$ is a **sum** term where all variables in the function appear once. It is more or less the same as a minterm, except the condition for each variable is **reversed** (i.e., $0$ indicates the complement).
|
||||||
|
|
||||||
|
$$M_j=x_1+x_2+\dots +x_n$$
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
For a sample function defined by the following maxterms:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
f(x_1,x_2,x_3,x_4)&=\prod M(1,2,8,12) \\
|
||||||
|
&=M_1M_2M_8M_{12} \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
??? example
|
||||||
|
Prove that $\sum m(1,2,3,4,5,6,7)=x_1+x_2+x_3$: **(some shortcuts taken for visual clarity)**
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\sum m(1,2,3,4,5,6,7) &=001+011+111+010+110+100+000 \\
|
||||||
|
\tag{SIMD distribution}&=001+010+100 \\
|
||||||
|
&=x_1+x_2+x_3
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
## VHDL
|
||||||
|
|
||||||
|
VHDL is a hardware schematic language.
|
||||||
|
|
||||||
|
<img src="https://static.javatpoint.com/tutorial/digital-electronics/images/multiplexer3.png" width=600 />
|
||||||
|
|
||||||
|
For example, the basic 2-to-1 multiplexer expressed above can be programmed as:
|
||||||
|
|
||||||
|
```vhdl
|
||||||
|
entity two_one_mux is
|
||||||
|
port (a0, s, a1 : in bit;
|
||||||
|
f : out bit);
|
||||||
|
end two_one_mux
|
||||||
|
|
||||||
|
architecture LogicFunc of two_one_mux is
|
||||||
|
begin
|
||||||
|
y <= (a0 AND s) OR (NOT s AND a1);
|
||||||
|
end LogicFunc;
|
||||||
|
```
|
||||||
|
|
||||||
|
In this case, the inputs are `a0, s, a1` that lead to an output `y`. All input/output is of type `bit` (a boolean).
|
||||||
|
|
||||||
|
The **architecture** defines how inputs translate to outputs via functions. These all run **concurrently**.
|
||||||
|
Loading…
Reference in New Issue
Block a user