forked from eggy/eifueo
ece140: add weird powers
This commit is contained in:
parent
ccd737b4aa
commit
5ea4838674
@ -454,3 +454,58 @@ Superposition must be summed at the end only, although individual components can
|
|||||||
4. Apply KCL/KVL
|
4. Apply KCL/KVL
|
||||||
|
|
||||||
When applying source transformations, different equivalent circuits for **each frequency** must be calculated individually — reducing it to one equivalent circuit is not possible.
|
When applying source transformations, different equivalent circuits for **each frequency** must be calculated individually — reducing it to one equivalent circuit is not possible.
|
||||||
|
|
||||||
|
### Power
|
||||||
|
|
||||||
|
The average power is the integral average of instantaneous power:
|
||||||
|
|
||||||
|
$$P=\frac 1 T \int^T_0 p(t)dt$$
|
||||||
|
|
||||||
|
!!! tip
|
||||||
|
The average of a sinusoid over its period is zero.
|
||||||
|
|
||||||
|
Alternatively, power can be calculated with magnitudes:
|
||||||
|
|
||||||
|
$$P=\frac 1 2\text{Re}[VI^*]=\frac 1 2 V_mI_m\cos(\theta_v-\theta_i)$$
|
||||||
|
|
||||||
|
The same rules for maximum power transfer apply with resistance, but with $Z_L$ as the **complex conjugate** of $Z_{Th}$. The maximum power has a shortcut formula:
|
||||||
|
|
||||||
|
$$P_{max}=\frac{|V_{Th}^2}{8R_{Th}}$$
|
||||||
|
|
||||||
|
The **effective value** of a sinusoid is its DC equivalent. It is the root mean square.
|
||||||
|
|
||||||
|
$$X_{rms}=\sqrt{\frac 1 T\int^T_0x^2dt}$$
|
||||||
|
|
||||||
|
The **apparent power** $S$ is the seemingly true power.
|
||||||
|
|
||||||
|
$$S=V_{rms}I_{rms}$$
|
||||||
|
|
||||||
|
The **power factor (pf)** is the required factor to take the apparent power into real power.
|
||||||
|
|
||||||
|
$$pf=\frac P S = \cos(\theta_v-\theta_i)$$
|
||||||
|
|
||||||
|
The **power factor angle** $\theta_v-\theta_i$ is the angle of local impedance between voltage and current.
|
||||||
|
|
||||||
|
$$Z=\frac{V_{rms}}{I_{rms}}\phase{\theta_v-\theta_i}=\frac{V_m}{I_m}\phase{\theta_v-\theta_i}$$
|
||||||
|
|
||||||
|
- A **leading** power factor has current lead voltage (capacitive)
|
||||||
|
- A **lagging** power factor has voltage lead current (inductive)
|
||||||
|
- A **unity** power factor has no phase shift
|
||||||
|
|
||||||
|
Complex power $\bold S$ stores more phase information where $\bold{V_{rms}}=V_{rms}\phase{\theta_v}$.
|
||||||
|
|
||||||
|
$$\bold S=\frac 1 2\bold{VI}^*=\bold{V_{rms}I^*_{rms}}$$
|
||||||
|
|
||||||
|
These have units volt-amperes (VA).
|
||||||
|
|
||||||
|
$$\bold S=V_{rms}I_{rms}\phase{\theta_v-\theta_i}=V_{rms}I_{rms}\cos(\theta_v-\theta_i)+jV_{rms}I_{rms}\sin(\theta_v-\theta_i)$$
|
||||||
|
|
||||||
|
The two components of complex power are actual power $P=I^2_{rms}R$ and reactive power $Q=I^2_{rms}X$, the latter with units VAR (volt-ampere reactive).
|
||||||
|
|
||||||
|
$$\bold S=P+jQ$$
|
||||||
|
|
||||||
|
Complex power still follows most DC laws:
|
||||||
|
|
||||||
|
$$\bold S=I^2_{rms}\bold Z=\frac{V^2_{rms}}{\bold Z^*}=\bold{V_{rms}I^*_{rms}}$$
|
||||||
|
|
||||||
|
All powers (instantaneous, real, reactive, and complex) are conserved, except for apparent power.
|
||||||
|
Loading…
Reference in New Issue
Block a user