forked from eggy/eifueo
ece108: add bayes law 2
This commit is contained in:
parent
6821d44e16
commit
63cc401698
@ -666,3 +666,5 @@ If there is a conducting loop in a time-varying magnetic field, a $V_{ind}$ is f
|
|||||||
$$V_{ind}=\oint\vec E\bullet\vec{d\ell}=-\frac{d}{dt}\int\vec B\bullet\vec{dS}$$
|
$$V_{ind}=\oint\vec E\bullet\vec{d\ell}=-\frac{d}{dt}\int\vec B\bullet\vec{dS}$$
|
||||||
|
|
||||||
Time-varying magnetic fields are formed if the field or charge is moving or if bounds change.
|
Time-varying magnetic fields are formed if the field or charge is moving or if bounds change.
|
||||||
|
|
||||||
|
|
||||||
|
@ -927,3 +927,8 @@ $$\text{independent}\iff Pr\{A\cup B\}=Pr\{A\}+Pr\{B\}-Pr\{A\}Pr\{B\}$$
|
|||||||
**Bayes' theorem** provides a general formula for conditional probability:
|
**Bayes' theorem** provides a general formula for conditional probability:
|
||||||
|
|
||||||
$$Pr\{A|B\}=\frac{Pr\{B|A\}}{Pr\{B\}}$$
|
$$Pr\{A|B\}=\frac{Pr\{B|A\}}{Pr\{B\}}$$
|
||||||
|
|
||||||
|
Formally, this can be solved without $Pr\{B\}$:
|
||||||
|
|
||||||
|
$$Pr\{A|B\}=\frac{Pr\{A\}Pr\{B|A\}}{Pr\{A\}Pr\{B|A\}+Pr\{\overline A\}Pr\{B|\overline A\}}$$
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user