forked from eggy/eifueo
math115: do not use special colv command
properly transition from mathjax because katex doesn't support newcommand global scoping
This commit is contained in:
parent
e08cef4a08
commit
68353b6ace
@ -246,13 +246,12 @@ Please see [SL Math - Analysis and Approaches 2#Vectors](/g11/mcv4u7/#vectors) a
|
|||||||
The column vector shows a vector of the form $(x, y, ...)$ from top to bottom as $(x_1, x_2, ...)$ as the number of dimensions increases.
|
The column vector shows a vector of the form $(x, y, ...)$ from top to bottom as $(x_1, x_2, ...)$ as the number of dimensions increases.
|
||||||
|
|
||||||
$$
|
$$
|
||||||
\newcommand\colv[1]{\begin{bmatrix}#1\end{bmatrix}}
|
\begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}
|
||||||
\colv{x_1 \\ x_2 \\ x_3}
|
|
||||||
$$
|
$$
|
||||||
|
|
||||||
The zero vector is full of zeroes.
|
The zero vector is full of zeroes.
|
||||||
$$
|
$$
|
||||||
\colv{0 \\ 0 \\ 0}
|
\begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
!!! warning
|
!!! warning
|
||||||
@ -394,13 +393,13 @@ In an augmented matrix, the system is consistent **if and only if** the resultan
|
|||||||
|
|
||||||
$$\text{system is consistent}\iff\vec b = A\vec x$$
|
$$\text{system is consistent}\iff\vec b = A\vec x$$
|
||||||
|
|
||||||
Where $\vec x$ is $\colv{x_1 \\ x_2 \\ ...}$ and $\vec a_n$ is the column vector of $A$ at $n$:
|
Where $\vec x$ is $\begin{bmatrix}x_1 \\ x_2 \\ ...\end{bmatrix}$ and $\vec a_n$ is the column vector of $A$ at $n$:
|
||||||
|
|
||||||
$$A\vec x = \vec a_1x_1 + \vec a_2x_2 + ... + \vec a_nx_n$$
|
$$A\vec x = \vec a_1x_1 + \vec a_2x_2 + ... + \vec a_nx_n$$
|
||||||
|
|
||||||
**Alternatively**, the matrix-vector product can be considered a dot product such that where $\vec r_1, \vec r_2, ...$ are the rows of $A$:
|
**Alternatively**, the matrix-vector product can be considered a dot product such that where $\vec r_1, \vec r_2, ...$ are the rows of $A$:
|
||||||
|
|
||||||
$$A\vec x = \vec b = \colv{\vec r_1\bullet\vec x \\ \vec r_2\bullet\vec x \\ ... \\ \vec r_n\bullet\vec x}$$
|
$$A\vec x = \vec b = \begin{bmatrix}\vec r_1\bullet\vec x \\ \vec r_2\bullet\vec x \\ ... \\ \vec r_n\bullet\vec x\end{bmatrix}$$
|
||||||
|
|
||||||
!!! warning
|
!!! warning
|
||||||
- $A$ must be $m\times n$.
|
- $A$ must be $m\times n$.
|
||||||
@ -429,7 +428,7 @@ $$A\vec x = \vec b = \colv{\vec r_1\bullet\vec x \\ \vec r_2\bullet\vec x \\ ...
|
|||||||
|
|
||||||
$$
|
$$
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
\vec b = \colv{-7 \\ 8} &= x_1\colv{1 \\ -1} + x_2\colv{3 \\ -4} + x_3 \colv{-2 \\ 3} \\
|
\vec b = \{-7 \\ 8} &= x_1\begin{bmatrix}1 \\ -1\end{bmatrix} + x_2\begin{bmatrix}3 \\ -4\end{bmatrix} + x_3 \begin{bmatrix}-2 \\ 3\end{bmatrix} \\
|
||||||
&= x_a\vec{a_1} + x_2\vec{a_2} + x_3\vec{a_3}
|
&= x_a\vec{a_1} + x_2\vec{a_2} + x_3\vec{a_3}
|
||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
$$
|
||||||
|
Loading…
Reference in New Issue
Block a user