forked from eggy/eifueo
ece108: day 1 update
This commit is contained in:
parent
3ab6f39bae
commit
6dacfc281d
@ -1,3 +1,63 @@
|
|||||||
# ECE 108: Discrete Math 1
|
# ECE 108: Discrete Math 1
|
||||||
|
|
||||||
|
An **axiom** is a defined core assumption held to be true.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
True is not false.
|
||||||
|
|
||||||
|
A **theorem** is a true statement derived from axioms via logic or other theorems.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
True or false is true.
|
||||||
|
|
||||||
|
A **proposition/statement** must be able to have the property that it is exclusively true or false.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
The square root of 2 is a rational number.
|
||||||
|
|
||||||
|
An **open sentence** becomes a proposition if a value is assigned to the variable.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
$x^2-x\geq 0$
|
||||||
|
|
||||||
## Truth tables
|
## Truth tables
|
||||||
|
|
||||||
|
A truth table lists all possible **truth values** of a proposition, containing independent **statement variables**.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
| p | q | p and q |
|
||||||
|
| --- | --- | --- |
|
||||||
|
| T | T | T |
|
||||||
|
| T | F | F |
|
||||||
|
| F | T | F |
|
||||||
|
| F | F | F |
|
||||||
|
|
||||||
|
## Logical operators
|
||||||
|
|
||||||
|
!!! definition
|
||||||
|
- A **compound statement** is composed of **component statements** joined by logical operators AND and OR.
|
||||||
|
|
||||||
|
The **negation** operator is equivalent to logical **NOT**.
|
||||||
|
|
||||||
|
$$\neg p$$
|
||||||
|
|
||||||
|
The **conjunction** operaetor is equivalent to logical **AND**.
|
||||||
|
|
||||||
|
$$p\wedge q$$
|
||||||
|
|
||||||
|
The **disjunction** operator is equivalent to logical **OR**.
|
||||||
|
|
||||||
|
$$p\vee q$$
|
||||||
|
|
||||||
|
The **implication** sign requires that if $p$ is true, $q$ is true, such that *$p$ implies $q$*. The first symbol is the **hypothesis** and the second symbol is the **conclusion**.
|
||||||
|
|
||||||
|
$$p\implies q$$
|
||||||
|
|
||||||
|
| $p$ | $q$ | $p\implies q$ |
|
||||||
|
| --- | --- | --- |
|
||||||
|
| T | T | T |
|
||||||
|
| T | F | F |
|
||||||
|
| F | T | T |
|
||||||
|
| F | F | F |
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user