forked from eggy/eifueo
ece106: add electrostatics and moment
This commit is contained in:
parent
b0e8f974e3
commit
778bb1efdf
@ -49,10 +49,9 @@ These rules also apply for a system in three dimensions:
|
|||||||
|
|
||||||
Although differential elements can be blindly used inside and outside an object (e.g., area), the rules break down as the **boundary** of an object is approached (e.g., perimeter). Applying these rules to determine an object's perimeter will result in the incorrect deduction that $\pi=4$.
|
Although differential elements can be blindly used inside and outside an object (e.g., area), the rules break down as the **boundary** of an object is approached (e.g., perimeter). Applying these rules to determine an object's perimeter will result in the incorrect deduction that $\pi=4$.
|
||||||
|
|
||||||
Therefore, further approximations can be made by making a length $\dl=\sqrt{(dx)^2+(dy)^2}$ to represent the perimeter.
|
Therefore, further approximations can be made using the Pythagorean theorem to represent the perimeter.
|
||||||
|
|
||||||
!!! example
|
$$dl=\sqrt{(dx^2) + (dy)^2}$$
|
||||||
This reduces to $dl=\sqrt{\left(\frac{dy}{dx}\right)^2+1}$.
|
|
||||||
|
|
||||||
### Polar coordinates
|
### Polar coordinates
|
||||||
|
|
||||||
@ -79,6 +78,15 @@ $$dS=(dr)(rd\phi)$$
|
|||||||
\end{align*}
|
\end{align*}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
|
If $r$ does not depend on $d\phi$, part of the integral can be pre-evaluated:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
dS&=\int^{2\pi}_{\phi=0} r\ dr\ d\phi \\
|
||||||
|
dS^\text{ring}&=2\pi r\ dr
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
So long as the variables are independent of each other, their order does not matter. Otherwise, the dependent variable must be calculated first.
|
So long as the variables are independent of each other, their order does not matter. Otherwise, the dependent variable must be calculated first.
|
||||||
|
|
||||||
|
|
||||||
@ -90,7 +98,72 @@ So long as the variables are independent of each other, their order does not mat
|
|||||||
\int^b_a\sin^2\phi=\frac{b-a}{2}
|
\int^b_a\sin^2\phi=\frac{b-a}{2}
|
||||||
$$
|
$$
|
||||||
|
|
||||||
## Cartesian coordinates
|
The side length of a curve is as follows:
|
||||||
|
|
||||||
The axes in a Cartesian coordinate plane must be orthogonal so that increasing a value in one axis does not affect any other. The axes must also point in directions that follow the **right hand rule**.
|
$$dl=\sqrt{(dr^2+(rd\phi)^2}$$
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
The side length of the curve $r=e^\phi$ (Archimedes' spiral) from $0$ to $2\pi$:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
dl &=d\phi\sqrt{\left(\frac{dr}{d\phi}\right)^2 + r^2} \\
|
||||||
|
\tag{$\frac{dr}{d\phi}=e^\phi$}&=d\phi\sqrt{e^{2\phi}+r^2} \\
|
||||||
|
&=????????
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Polar **volume** is the same as Cartesian volume:
|
||||||
|
|
||||||
|
$$dV=A\ dr$$
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
For a cylinder of radius $R$ and height $h$:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
dV&=\pi R^2\ dr \\
|
||||||
|
V&=\int^h_0 \pi R^2\ dr \\
|
||||||
|
&=\pi R^2 h
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
### Moment of inertia
|
||||||
|
|
||||||
|
The **mass distribution** of an object varies depending on its surface density $\rho_s$. In objects with uniformly distributed mass, the surface density is equal to the total mass over the total area.
|
||||||
|
|
||||||
|
$$dm=\rho_s\ dS$$
|
||||||
|
|
||||||
|
The formula for the **moment of inertia** of an object is as follows, where $r_\perp$ is the distance from the axis of rotation:
|
||||||
|
|
||||||
|
$$dI=(r_\perp)^2dm$$
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
In a uniformly distributed disk rotating about the origin like a CD with mass $M$ and radius $R$:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
\rho_s &= \frac{M}{\pi R^2} \\
|
||||||
|
dm &= \rho_s\ r\ dr\ d\phi \\
|
||||||
|
dI &=r^2\ dm \\
|
||||||
|
&= r^2\rho_s r\ dr\ d\phi \\
|
||||||
|
&= \rho_s r^3dr\ d\phi \\
|
||||||
|
I &=\rho_s\int^{2\pi}_{\phi=0}\int^R_{r=0} r^3dr\ d\phi \\
|
||||||
|
&= \rho_s\int^{2\pi}_{\phi=0}\frac{1}{4}R^4d\phi \\
|
||||||
|
&= \rho_s\frac{1}{2}\pi R^4 \\
|
||||||
|
&= \frac 1 2 MR^2
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
## Electrostatics
|
||||||
|
|
||||||
|
!!! definition
|
||||||
|
- The **polarity** of a particle is whether it is positive or negative.
|
||||||
|
|
||||||
|
The law of **conservation of charge** states that electrons and charges cannot be created nor destroyed, such that the **net charge in a closed system stays the same**.
|
||||||
|
|
||||||
|
The law of **charge quantisation** states that charge is discrete — electrons have the lowest possible quantity.
|
||||||
|
|
||||||
|
Please see [SL Physics 1#Charge](/sph3u7/#charge) for more information.
|
||||||
|
|
||||||
|
**Coulomb's law** states that for point charges $Q_1, Q_2$ with distance from the first to the second $\vec R_{12}$:
|
||||||
|
|
||||||
|
$$\vec F_{12}=k\frac{Q_1Q_2}{||R_{12}||^2}\hat{R_{12}}$$
|
||||||
|
@ -56,7 +56,7 @@ In practice, this means that if any two paths result in different limits, the li
|
|||||||
|
|
||||||
Along $y=0$:
|
Along $y=0$:
|
||||||
|
|
||||||
$$\lim_{(x,0)\to(0, 0) ... = 1$$
|
$$\lim_{(x,0)\to(0, 0)} ... = 1$$
|
||||||
|
|
||||||
Along $x=0$:
|
Along $x=0$:
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user