forked from eggy/eifueo
math117: add trig integration
This commit is contained in:
parent
af6b2adbb2
commit
7a66dfef2e
@ -528,3 +528,71 @@ Please see [SL Math - Analysis and Approaches 2#Integration](/g11/mhf4u7/#52-inc
|
|||||||
- $\int\sec x\tan x dx = \sec x + C$
|
- $\int\sec x\tan x dx = \sec x + C$
|
||||||
- $\int\csc x\cot xdx = -\csc x + C$
|
- $\int\csc x\cot xdx = -\csc x + C$
|
||||||
- $\int\frac{1}{1+x^2}dx=\tan^{-1}x+C$
|
- $\int\frac{1}{1+x^2}dx=\tan^{-1}x+C$
|
||||||
|
- $\int\sec xdx = \ln|\sec x + \tan x| + C$
|
||||||
|
- $\int\csc x dx = -\ln|\csc x + \cot x| + C$
|
||||||
|
|
||||||
|
### Integration by parts
|
||||||
|
|
||||||
|
IBP lets you replace an integration problem with a different, potentially easier one.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\int u\ dv = uv-\int v\ du
|
||||||
|
$$
|
||||||
|
|
||||||
|
or, in function notation:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\int u(x)v'(x)dx = u(x)v(x)-\int v(x)u'(x)dx
|
||||||
|
$$
|
||||||
|
|
||||||
|
Effectively, a product of two factors should be made simpler such that one is differentiable and the other is integratable. While there are integrals on both sides, the constant $C$ can be cancelled out for simplicity.
|
||||||
|
|
||||||
|
Heuristics to be used:
|
||||||
|
|
||||||
|
- $dv$ must be differentiable
|
||||||
|
- $u$ should be simpler when differentiated
|
||||||
|
- IBP might need to be used repeatedly
|
||||||
|
- IBP and u-substitution might be needed together
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
To solve $\int xe^xdx$:
|
||||||
|
|
||||||
|
Let $u=x$, $dv=e^xdx$:
|
||||||
|
|
||||||
|
$\therefore du=dx, v=e^x + C$
|
||||||
|
|
||||||
|
via IBP:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
\int udv &= xe^x - \int e^xdx \\
|
||||||
|
&= xe^x-e^x + K
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Please see [SL Math - Analysis and Approaches 2#Area between two curves](/g11/mcv4u7/#area-between-two-curves) for more information.
|
||||||
|
|
||||||
|
- A **Type 1** region is bounded by functions of $x$ — it's open-ended in the x-axis.
|
||||||
|
- A **Type 2** region is bounded by functions of $y$, which can be solved by integrating $y$.
|
||||||
|
- A **Type 3** region can be viewed as either Type 1 or 2.
|
||||||
|
|
||||||
|
### Mean values
|
||||||
|
|
||||||
|
|
||||||
|
The **mean value** of a continuous function $f(x)$ in $[a, b]$ is equal to:
|
||||||
|
|
||||||
|
$$\text{m.v.} (f) = \frac{1}{b-a}\int_a^b f(x)dx$$
|
||||||
|
|
||||||
|
The **root mean square** is equal to the square root of the mean value for each point:
|
||||||
|
|
||||||
|
$$\text{r.m.s.} (f) = \sqrt{\frac{1}{b-a}\int_a^b f(x)^2dx}$$
|
||||||
|
|
||||||
|
### Trigonometric substitution
|
||||||
|
|
||||||
|
If $a\in\mathbb R$, functions of the form $\sqrt{x^2\pm a^2}$ or $\sqrt{a^2-x^2}$ can be rearranged in the form of a trig function.
|
||||||
|
|
||||||
|
- In $\sqrt{x^2 + a^2} \rightarrow x=a\tan\theta$
|
||||||
|
- In $\sqrt{x^2-a^2} \rightarrow x=a\sec\theta$
|
||||||
|
- In $\sqrt{a^2-x^2} \rightarrow x=a\sin\theta$
|
||||||
|
|
||||||
|
…which can be used to derive other trig identities to be integrated.
|
||||||
|
Loading…
Reference in New Issue
Block a user