forked from eggy/eifueo
math119: add optimisation constraints
This commit is contained in:
parent
da0bae4c69
commit
828a653740
@ -288,3 +288,37 @@ Local maxima tend to be **concave down** while local minima are **concave up**.
|
|||||||
a. If $f_{xx}(P_0)<0$, the point is a maximum — otherwise it is a minimum
|
a. If $f_{xx}(P_0)<0$, the point is a maximum — otherwise it is a minimum
|
||||||
3. If it is less than zero, it is a saddle point — otherwise the test is inconclusive and you must use your eyeballs
|
3. If it is less than zero, it is a saddle point — otherwise the test is inconclusive and you must use your eyeballs
|
||||||
|
|
||||||
|
### Optimisation with constraints
|
||||||
|
|
||||||
|
If there is a limitation in optimising for $f(x,y)$ in the form $g(x,y)=K$, new critical points can be found by setting them equal to each other, where $\lambda$ is the **Lagrange multiplier** that determines the rate of increase of $f$ with respect to $g$:
|
||||||
|
|
||||||
|
$$\nabla f = \lambda\nabla g, g(x,y)=K$$
|
||||||
|
|
||||||
|
If possible, $\nabla g=\vec 0, g(x,y)=K$ should also be tested.
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
If $A(x,y)=xy$, $g(x,y)=K: x+2y=400$, and $A(x,y)$ should be maximised:
|
||||||
|
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
\nabla f &= (y, x) \\
|
||||||
|
\nabla g &= (1, 2) \\
|
||||||
|
(y, x) &= \lambda (1, 2) \\
|
||||||
|
\begin{cases}
|
||||||
|
y &= \lambda \\
|
||||||
|
x &= 2\lambda \\
|
||||||
|
x + 2y &= 400 \\
|
||||||
|
\end{cases}
|
||||||
|
\\
|
||||||
|
\\
|
||||||
|
\therefore y=100,x=200,A=20\ 000
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
This applies equally to higher dimensions and constraints by adding a new term for each constraint. Given $f(x,y,z)$ with constraints $g(x,y,z)=K$ and $h(x,y,z)=M$:
|
||||||
|
|
||||||
|
$$\nabla f=\lambda_1\nabla g + \lambda_2\nabla h$$
|
||||||
|
|
||||||
|
### Absolute extrema
|
||||||
|
|
||||||
|
- If end points exist, those should be added
|
||||||
|
- If no endpoints exist and the limits go to $\pm\infty$, there are no absolute extrema
|
||||||
|
Loading…
Reference in New Issue
Block a user