forked from eggy/eifueo
math115: add matrix algebra
This commit is contained in:
parent
05402d542e
commit
8b8b488766
@ -386,6 +386,36 @@ Each variable $x_n$ is a **leading variable** if there is a leading entry in $A$
|
|||||||
|
|
||||||
!!! example
|
!!! example
|
||||||
TODO: LEARN example
|
TODO: LEARN example
|
||||||
|
|
||||||
|
### Matrix algebra
|
||||||
|
|
||||||
|
!!! definition
|
||||||
|
- $M_{m\times n}(\mathbb R)$ is the set of all real matrices.
|
||||||
|
- A **square matrix** has $m=n$.
|
||||||
|
- The **zero matrix** $0_{m\times n}$ has every entry equal to 0.
|
||||||
|
|
||||||
|
In a $m\times n$ matrix $A$, $a_{ij}$ or $(A)_{ij}$ represents the entry in the $i$th row and $j$th column.
|
||||||
|
|
||||||
|
$$A=[a_{ij}]$$
|
||||||
|
|
||||||
|
Two matrices with size $m\times n$ $[a_{ij}]$ and $[b_{ij}]$ are equal if and only if $a_{ij} = b_{ij}$ for every i and j (formally, for every $i=1, ..., m, j = 1, ..., n$).
|
||||||
|
|
||||||
|
Properties of matrices include:
|
||||||
|
|
||||||
|
- $(A+B)_{ij} = (A)_{ij} + (B)_{ij}$
|
||||||
|
- $(cA)_{ij} = (cB)_{ij}, c\in\mathbb R$
|
||||||
|
- $A-B=A+(-1)B$
|
||||||
|
|
||||||
|
The **matrix transpose** $A^T$ is the matrix satisfying $(A^T)_{ij}=(A)_j$, as if it was reflected along the primary diagonal.
|
||||||
|
|
||||||
|
A matrix is **symmetric** if $A^T = A$, implying a square matrix.
|
||||||
|
|
||||||
|
Properties of transposed matrices:
|
||||||
|
|
||||||
|
- $A^T\in M_{n\times m}(\mathbb R)$
|
||||||
|
- $(A^T)^T = A$
|
||||||
|
- $(A+B)^T=A^T+B^T$
|
||||||
|
|
||||||
|
|
||||||
### Matrix-vector product
|
### Matrix-vector product
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user