forked from eggy/eifueo
ece108: add functions intro
This commit is contained in:
parent
66b08a899e
commit
9d7153d904
@ -407,7 +407,7 @@ $$[a,b)=\{x\in\mathcal U|a\leq x\wedge x<b\}$$
|
|||||||
|
|
||||||
$\empty$ is any impossible interval.
|
$\empty$ is any impossible interval.
|
||||||
|
|
||||||
## Ordered pairs
|
### Ordered pairs
|
||||||
|
|
||||||
!!! definition
|
!!! definition
|
||||||
- A **binary relation** on two sets $A, B$ is a subset of their Cartesian product.
|
- A **binary relation** on two sets $A, B$ is a subset of their Cartesian product.
|
||||||
@ -426,3 +426,93 @@ It is effectively the cross product, so is not commutative, although distributin
|
|||||||
The **n-Cartesian product** of $n$ sets expands the Cartesian product.
|
The **n-Cartesian product** of $n$ sets expands the Cartesian product.
|
||||||
|
|
||||||
$$A\times B\times\dots\times Z=\{\left<a, b,\dots z\right>|a\in A, b\in B,\dots,z\in Z\}$$
|
$$A\times B\times\dots\times Z=\{\left<a, b,\dots z\right>|a\in A, b\in B,\dots,z\in Z\}$$
|
||||||
|
|
||||||
|
### Powersets
|
||||||
|
|
||||||
|
!!! definition
|
||||||
|
- An **index set** $I$ is the set containing all relevant indices.
|
||||||
|
|
||||||
|
A **partition** of a set $S$ is a set of **disjoint** sets that create the original set when unioned.
|
||||||
|
|
||||||
|
$$S=\bigcup_{i\in I}A_i$$
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
$\{\{1\},\{2,3\},\{4,\dots\}\}$ is a partition of $\mathbb N$.
|
||||||
|
|
||||||
|
A **powerset** of a set $A$ is the set of all possible subsets of that set.
|
||||||
|
|
||||||
|
$$\mathcal P(A)=\{X|X\subseteq A\}$$
|
||||||
|
|
||||||
|
The empty set is the subset of every set so is part of each powerset. The number of elements in a subset is equal to the the number of elements in the original set as a power of two.
|
||||||
|
|
||||||
|
$$\dim(\mathcal P(A))=2^{\dim(A)}$$
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
- $\mathcal P(\empty)=\empty$
|
||||||
|
- $\mathcal P(\{1,2\})=\{\empty, \{1\}, \{2\}, \{1, 2\}\}$
|
||||||
|
|
||||||
|
By definition, any subset is an element in the powerset.
|
||||||
|
|
||||||
|
$$A\subseteq B\equiv A\in\mathcal P(B)$$
|
||||||
|
|
||||||
|
- $\empty\in\mathcal P(A)$
|
||||||
|
- $A\in\mathcal P(A)$
|
||||||
|
- $A\subseteq B\implies (\mathcal P(A)\subseteq \mathcal P(B))$
|
||||||
|
- $A\in C\implies (C-A\subseteq C)$
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
To prove $A\subseteq B\implies \mathcalP(A)\subseteq \mathcal P(B)$:
|
||||||
|
|
||||||
|
**Proof:** Let $A\subseteq B$ and $X\in\mathcal P(A)$. By definition, since $X\in\mathcal P(A), X\subseteq A$. Since $A\subseteq B$, it follows that $X\subseteq B$. Thus by the definition of the powerset, $X\in\mathcal P(B)$.
|
||||||
|
|
||||||
|
## Functions
|
||||||
|
|
||||||
|
!!! definition
|
||||||
|
- A **surjective** function has an equal codomain and range.
|
||||||
|
|
||||||
|
A **function** a relation between two sets $f:X\to Y$ such that each $x\in X$ **maps to** a unique $f(x)\in Y$.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
f:\ &X\to Y \\
|
||||||
|
&x\longmapsto f(x)
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
!!! example
|
||||||
|
Sample function with multiple cases and indices:
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
f:\ &X\to Y \\
|
||||||
|
&x_i\longmapsto \begin{cases}
|
||||||
|
y_1 & i\in\{1,2\} \\
|
||||||
|
y_3 & i\in\{3,4,5\}
|
||||||
|
\end{cases}
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
The **domain** $\text{dom}(f)$ is the input set.
|
||||||
|
|
||||||
|
$$X=\text{dom}(f)$$
|
||||||
|
|
||||||
|
The **codomain** $\text{cod}(f)$ is the output set.
|
||||||
|
|
||||||
|
$$Y=\text{cod}(f)$$
|
||||||
|
|
||||||
|
The **range** $\text{rang}(f)$ is the subset of $Y$ that is actually mapped to by the domain.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{align*}
|
||||||
|
\text{rang}(f)&=\{y\in Y|\exists x\in X,y=f(x)\} \\
|
||||||
|
&=\{f(x)|x\in X\}
|
||||||
|
\end{align*}
|
||||||
|
$$
|
||||||
|
|
||||||
|
The **pre-image** is the subset of the domain that maps to a specific subset $B$ of the codomain.
|
||||||
|
|
||||||
|
$$\text{preimage}(f)=\{x\in X|\exists y\in B,y=f(x)\}$$
|
||||||
|
|
||||||
|
The **image** is the subset of the codomain that is mapped by a specific subset $A$ of the domain.
|
||||||
|
|
||||||
|
$$\text{image}(f)=\{f(x)|\exists x\in A\}$$
|
||||||
|
Loading…
Reference in New Issue
Block a user