forked from eggy/eifueo
math117: add impedance
This commit is contained in:
parent
4d8aa09f25
commit
b537a530c8
@ -725,3 +725,30 @@ $$L=\int^\beta_\alpha\sqrt{f'(\phi)^2 + f(\phi)^2}\ d\phi = \int^\beta_\alpha\sq
|
|||||||
## Complex numbers
|
## Complex numbers
|
||||||
|
|
||||||
Please see [MATH 115: Linear Algebra#Complex Numbers](/ce1/math115/#complex-numbers) for more information.
|
Please see [MATH 115: Linear Algebra#Complex Numbers](/ce1/math115/#complex-numbers) for more information.
|
||||||
|
|
||||||
|
### Impedance
|
||||||
|
|
||||||
|
Where $\~i$ is a complex number representing the current of a circuit:
|
||||||
|
|
||||||
|
$$\~i(t)=I\cdot Im(e^{j\omega t})$$
|
||||||
|
|
||||||
|
This can be related to Ohm's law, because $v(t)=IR\sin(\omega t)$ such that $\~v=IRe^{j\omega t}$:
|
||||||
|
|
||||||
|
$$\~v=R\~i$$
|
||||||
|
|
||||||
|
In fact, t
|
||||||
|
|
||||||
|
$$
|
||||||
|
\~v=Z\~i,\text{ where } Z=\begin{cases}
|
||||||
|
\begin{align*}
|
||||||
|
&R &\text{ for resistors} \\
|
||||||
|
&\frac{1}{j\omega C} &\text{ for capacitors} \\
|
||||||
|
&j\omega L &\text{ for inductors}
|
||||||
|
\end{align*}
|
||||||
|
\end{cases}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Impedance has similar properties to resistance.
|
||||||
|
|
||||||
|
- In series: $Z = Z_1 + Z_2 + Z_3 ...$
|
||||||
|
- In parallel: $\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} ...$
|
||||||
|
Loading…
Reference in New Issue
Block a user