From bb8f159c354bfbbd039c8fa32d7ac029a1de1d5d Mon Sep 17 00:00:00 2001 From: eggy Date: Tue, 7 Nov 2023 14:55:44 -0500 Subject: [PATCH] ece205: orthogonality and fourier --- docs/2a/ece205.md | 31 +++++++++++++++++++++++++++++++ 1 file changed, 31 insertions(+) diff --git a/docs/2a/ece205.md b/docs/2a/ece205.md index 09d57f8..c8c22cb 100644 --- a/docs/2a/ece205.md +++ b/docs/2a/ece205.md @@ -245,6 +245,37 @@ If functions $f$ and $g$ have a period $T$, then both $af+bg$ and $fg$ also must - odd × odd = even - even × odd = odd +## Orthogonality + +$$\int^L_{-L}\cos(\frac{m\pi x}{L})\sin(\frac{n\pi x}{L})dx=0$$ + +$$ +\int^L_{-L}\cos(\frac{m\pi x}{L})(\frac{n\pi x}{L})dx=\begin{cases} +2L & \text{if }m=n=0 \\ +L & \text{if }m=n\neq 0 \\ +0 & \text{if }m\neq n +\end{cases} +$$ + +$$ +\int^L_{-L}\sin(\frac{m\pi x}{L}\sin(\frac{n\pi x}{L})dx=\begin{cases} +L & \text{if }m=n \\ +0 & \text{if }m\neq n +\end{cases} +$$ + +Functions are **orthogonal** on an interval when the integral of their product is zero, and a set of functions is **mutually orthogonal** if all functions in the set are orthogonal to each other. + +If a Fourier series converges to $f(x)$: + +$$f(x)=\frac{a_0}{2} + \sum^\infty_{n=1}\left(a_n\cos(\frac{n\pi x}{L})+b_n\sin(\frac{n\pi x}{L})\right)$$ + +The **Euler-Fourier** formulae must apply: +$$ +\boxed{a_n=\frac 1 L\int^L_{-L}f(x)\cos(\frac{n\pi x}{L})dx} \\ +\\ +\boxed{b_n=\frac 1 L\int^L_{-L}f(x)\sin(\frac{n\pi x}{L})dx} +$$ ## Resources