diff --git a/docs/mcv4u7.md b/docs/mcv4u7.md index f42a501..99f2cd6 100644 --- a/docs/mcv4u7.md +++ b/docs/mcv4u7.md @@ -635,6 +635,106 @@ If no normals are scalar multiples: - the result is true with no variable (e.g., $0 = 0$), there are is an infinite number of solutions along a line - the result contains a variable (e.g., $t = 4$), there is a single point of intersection at the parameter $t$. +## Matrices + +A **matrix** is a two-dimensional array with rows and columns, represented by a capital letter and a grid denoted by square brackets. +$$ +A= +\begin{bmatrix} +1 & 2 & 3 \\ +4 & 5 & 6 +\end{bmatrix} +$$ + +$A_{ij}$ represents the element in the $i$th row and the $j$th column. + +A **coefficient matrix** contains coefficients of variables. +$$ +A= +\begin{bmatrix} +1 & 2 & 3 \\ +4 & 5 & 6 +\end{bmatrix} +$$ + +An **augmented matrix** also contains constants, separated by a vertical line. +$$ +A= +\left[\begin{array}{rrr|r} +1 & 2 & 3 & 5 \\ +4 & 5 & 6 & 10 +\end{array}\right] +$$ + +!!! example + The equation system + $$ + x+2y-4z=3 \\ + -2x+y+3z=4 \\ + 4x-3y-z=-2 + $$ + can be written as the matrix + $$ + A= + \left[\begin{array}{rrr|r} + 1 & 2 & -4 & 3 \\ + -2 & 1 & 3 & 4 \\ + 4 & -3 & -1 & -2 + \end{array}\right] + $$ + +### Gaussian elimination + +Gaussian elimination is used to solve a system of linear relations, such as that of plane equations. It aims to reduce a matrix into its **row echelon form** shown below to solve for each variable. +$$ +A= +\left[\begin{array}{rrr|r} +a & b & c & d \\ +0 & e & f & g \\ +0 & 0 & h & i +\end{array}\right] +$$ + +The following **row operations** can be performed on the matrix to achieve this state: + + - swapping (interchanging) the position of two rows + - $R_a \leftrightarrow R_b$ + - multiplying a row by a non-zero constant + - $AR_a \to R_a$ + - adding/subtracting rows, overwriting the destination row + - $R_a\pm R_b\to R_b$ + - multiplying a row by a non-zero constant and then adding/subtracting it to another row + - $AR_a + R_b \to R_b$ + +!!! example + In the matrix from the previous example, by performing $R_1\leftrightarrow R_2$: + $$ + A= + \left[\begin{array}{rrr|r} + -2 & 1 & 3 & 4 \\ + 1 & 2 & -4 & 3 \\ + 4 & -3 & -1 & -2 + \end{array}\right] + $$ + $5R_1\to R_1$: + $$ + A= + \left[\begin{array}{rrr|r} + -10 & 5 & 15 & 20 \\ + 1 & 2 & -4 & 3 \\ + 4 & -3 & -1 & -2 + \end{array}\right] + $$ + $10R_2+R_1\to R_1$: + $$ + A= + \left[\begin{array}{rrr|r} + 0 & 25 & -25 & 50 \\ + 1 & 2 & -4 & 3 \\ + 4 & -3 & -1 & -2 + \end{array}\right] + $$ + ## Resources - [IB Math Analysis and Approaches Syllabus](/resources/g11/ib-math-syllabus.pdf)